DOI QR코드

DOI QR Code

Preparation of Nano Wire by Anodic Oxidation I. Characteristics of Alumina Nano-Template by Anodic Oxidation

양극산화법에 의한 나노와이어 제조I. 알루미나 나노 템플레이트의 특성

  • Jo, Su-Haeng (School of Metallurgical and Materials Engineering, Kookmin University) ;
  • O, Han-Jun (Dept of Materials Engineering, Hanseo University) ;
  • Park, Chi-Seon (Department of Electronic Engineering, Hanseo University) ;
  • Jang, Jae-Myeong (School of Metallurgical and Materials Engineering, Kookmin University) ;
  • Ji, Chung-Su (School of Metallurgical and Materials Engineering, Kookmin University)
  • 조수행 (국민대학교 금속재료공학부) ;
  • 오한준 (한서대학교 재료공학과) ;
  • 박치선 (한서대학교 전자공학과) ;
  • 장재명 (국민대학교 금속재료공학부) ;
  • 지충수 (국민대학교 금속재료공학부)
  • Published : 2002.02.01

Abstract

Anodic alumina layer can be used as templates for preparation of nano-structured materials, because porous oxide layer on aluminum shows a uniform pore size and a high pore density. In order to find out possibility for template material to prepare nano wire, the effects of the anodic applied potential, anodic time and the temperature of electrolyte on pore diameter of anodic alumina layer were studied using SEM and AFM. The pore diameter of anodic alumina layer increased with applied anodic potential and electrolytic temperature. Especially, the pore diameter of anodic oxide layers formed in chromic acid can be well replicated by widening process in $H_3$$PO_4$solution.

Keywords

References

  1. J.C. Hultten and C.R. Martine, J. Mater Chem. 7, 1075 (1997) https://doi.org/10.1039/a700027h
  2. C.R. Martine, Chem. Mater. 8, 1739 (1996) https://doi.org/10.1021/cm960166s
  3. S. Kawai and R. Ueda, J. Electrochem. Soc. 122, 32 (1975) https://doi.org/10.1149/1.2134152
  4. T.-J. Cheng, J. Jarne and J.-S. Gau, J. Electrochem. Soc., 137, 93 (1990) https://doi.org/10.1149/1.2086446
  5. Y.F. Cha and J. Ruckenstein, J. Catal., 55, 281 (1978) https://doi.org/10.1016/0021-9517(78)90217-8
  6. K. Itaya, S. Sugawara, K. Arai and S. Saito, J. Chem. Eng. Jpn., 17, 514 (1984) https://doi.org/10.1252/jcej.17.514
  7. T. Yoshino and N. Baba, J. Chem. Eng. Jpn., 1983, 955 (1983)
  8. N. Osawa and K. Fukuoka, J. Chem. Eng. Jpn., 50, 643 (1999)
  9. T. Matsuzaki and T. Yamazaki, Fujitsu Scientific and Technical J, 6, 45 (1980)
  10. I. Serbrennikova, P. Vanysek and V. I. Birss, Electrochim. Acta, 42(1), 146 (1997) https://doi.org/10.1016/0013-4686(96)00184-3
  11. G.J. Strijkers, J.H.J. Dalderop, M.A.A. Broeksteeg, H.J.M. Swagten and W.J.M. de Jonge, J. Appl. Phys. Lett. 73, 1589 (1998) https://doi.org/10.1063/1.122213
  12. T. Sato and K. Kaminaga, Altopia, p57, 1996 (Jan)
  13. K.H. Lee, J. Kor. Electrochem. Soc., 4, 49 (2001)
  14. S. Wernick, R. Pinner and P. G. Sheasby, The Surface Treatment and Finishing of Aluminum and Its ALoys, 5th ed., vol 1. ASM International, Metals Park, OH (1987)