DOI QR코드

DOI QR Code

The Effect of MOCVD Growth Parameters on the Photolumenescence Intensity of InN/GaN Multi-layers

MOCVD 성장조건이 InN/GaN 다층박막의 발광세기에 미치는 영향

  • Kim, Hyeon-Su (Department of Physics, Gyeongsang National University) ;
  • Lee, Jeong-Ju (Department of Physics, Gyeongsang National University) ;
  • Jeong, Sun-Yeong (Department of Physics, Gyeongsang National University) ;
  • Lee, Jeong-Yong (Dept. of Materials Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lin, J.Y. (Department of Physics, Kansas State University) ;
  • Jiang, H.X. (Department of Physics, Kansas State University)
  • 김현수 (경상대학교 자연과학대학 물리학과) ;
  • 이정주 (경상대학교 자연과학대학 물리학과) ;
  • 정순영 (경상대학교 자연과학대학 물리학과) ;
  • 이정용 (한국과학기술원 전자재료공학과) ;
  • ;
  • Published : 2002.03.01

Abstract

InN/GaN multi-layers were grown by metalorganic chemical vapor deposition(MOCVD) in order to get the appropriate structure for an high power blue-green light emitting diode(LED), and effects of growth conditions (growth temperature, pressure, and $trimethylindium(TMIn)-NH_3-N_2\; flow\; rare)$ on the integrated photoluminescence (PL) intensity and PL peak energy in InN/GaN multi-layers were investigated. The optimized growth conditions with the highest integrated PL intensity for InN/GaN multi-layers were obtained: the growth temperature at $780^{\circ}C$, the growth pressure at 325 Torr, the TMIn flow rate with 150 $m\ell$/min, the $NH_3$flow rate with 3.2 ι/min, and $N_2$ flow rate with 2 ι/min.

Keywords

References

  1. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994) https://doi.org/10.1063/1.358463
  2. S.D. Lester, F.A. Ponce, M.G. Crawford, and D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995) https://doi.org/10.1063/1.113252
  3. S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, J. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Appl. Phys. Lett. 68, 2105 (1996) doi: https://doi.org/10.1063/1.115599
  4. O. Alotas, W. Kim, Z. Fan, A. Bothkarev, A. Sulvador, S. N. Mohammad, B. Sverdlov, and H. Morkoc, Electron. Lett. 31, 1389 (1995) https://doi.org/10.1049/el:19950921
  5. S. Nakamura, Science 281, 956 (1998) https://doi.org/10.1126/science.281.5379.956
  6. I. Lo, K.Y. Hsieh, S.L. Hwang, L.W. Tu, C. Mitchel, and A.W. Saxler, Appl. Phys. Lett. 74, 2167 (1999) https://doi.org/10.1063/1.123789
  7. O. Ambacher, J. Phys. D: Appl. Phys. 31, 2653 (1998) https://doi.org/10.1088/0022-3727/31/20/001
  8. I. Ho and G.B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996) https://doi.org/10.1063/1.117683
  9. M.D. McCluskey, L.T. Romano, B.S. Krusor, D.P. Bour, N.M. Johnson, and S. Brennan, Appl. Phys. Lett. 72, 1730 (1998) https://doi.org/10.1063/1.121166
  10. N.A. El-Masry, E.L. Piner, S.X. Liu, and S.M. Bedair, Appl. Phys. Lett. 72, 40 (1998) https://doi.org/10.1063/1.120639
  11. T. Takeuchi, S. Sato, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., part 2, 36, L382 (1997) https://doi.org/10.1143/JJAP.36.L382
  12. S.F. Chichibu, A.C. Abare, M.S. Minsky, S. Keller, S.B. Fleischer, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, and T. Sota, Appl. Phys. Lett. 73, 2006 (1998) https://doi.org/10.1063/1.122350
  13. T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 73, 3571 (1998) https://doi.org/10.1063/1.122810
  14. Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B55, R1938 (1997) https://doi.org/10.1103/PhysRevB.55.R1938
  15. M. Smith, G.D. Chen, J.Y. Lin, H.X. Jiang, M.A. Khan, and Q. Chen, Appl. Phys. Lett. 69, 2837 (1996) https://doi.org/10.1063/1.117335
  16. R.W. Martin, P.G. Middleton, K.P. O'Donnell, and W. Van der Stricht, Appl. Phys. Lett. 74, 263 (1999) https://doi.org/10.1063/1.123275
  17. K.P. O'Donnell, R.W. Martin, and P.G. Middleton, Phys. Rev. Lett. 82, 237 (1999) doi: https://doi.org/10.1103/PhysRevLett.82.237
  18. S. Chichibu, T. Sota, K. Wada, and S. Nakamura, J. Vac. Sci. Technol. B16, 2204 (1998) https://doi.org/10.1116/1.590149
  19. H.C. Yang, P.F. Kuo, T.Y. Lin, Y.F. Chen, K.H. Chen, L.C. Chen, and J.-I. Chyi, Appl. Phys. Lett. 76, 3712 (2000) https://doi.org/10.1063/1.126758
  20. C.-C. Chuo, C.-M. Lee, T.-E. Nee, and J.-I. Chyi, Appl. Phys. Lett. 76, 3902 (2000) https://doi.org/10.1063/1.126815
  21. G. Popovici, H. Morkoc, and N. Mohammad, in Group III Nitride Semiconductor Compounds. ed. B. Gil (Oxford University Press, New York, USA, 1998) p. 21
  22. K.S. Kim, C.-H. Hong, W.-H. Lee, C.S. Kim, O.H. Cha, G.M. Yang, E.-K. Suh, K.Y. Lim, H.J. Lee, H.K. Cho, J.Y. Lee, and J.M. Seo, MRS Intrnet J. Nitride Semicond. Res. 5S1, W11.74 (2000)
  23. A. Koukitu, N. Takahashi, T. Taki, and H. Seki, J. Cryst. Growth 170, 206 (1997) https://doi.org/10.1016/S0022-0248(96)00535-0
  24. T. Saito and Y. Arakawa, Phys. Rev. B60, 1701 (1999) https://doi.org/10.1103/PhysRevB.60.1701
  25. M. Tchounkeu, O. Briot, B. Gil, J. Alexis, and R. Anlombard, J. Appl. Phys. 80, 5352 (1996) https://doi.org/10.1063/1.363475
  26. F. Scholz, V. Harle, F. Steuber, H. Boley, A. Dornen, B. Kaufmann, V. Syganow, and A. Hangleiter, J. Cryst. Growth 170, 321 (1997) https://doi.org/10.1016/S0022-0248(96)00606-9