DOI QR코드

DOI QR Code

Fabrication Techniques for Carbon Nanotube Field Emitters by Screen Printing

스크린 프린팅법에 의한 탄소나노튜브 전계방출소자의 제조기술

  • Yi, Mann (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Son, Ji-Ha (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology) ;
  • Chu, Haang-Rhym (LG PHILIPS Displays, Device Research Lab) ;
  • Jeong, Hyo-Soo (LG PHILIPS Displays, Device Research Lab) ;
  • Koh, Nam-Je (LG PHILIPS Displays, Device Research Lab) ;
  • Lee, Dong-Gu (School of Advanced Materials & System Engineering, Kumoh National Institute of Technology)
  • 이만 (금오공과대학교, 신소재시스템공학부) ;
  • 손지하 (금오공과대학교, 신소재시스템공학부) ;
  • 주학림 (LG. PHILIPS Displays, 디바이스 연구소) ;
  • 정효수 (LG. PHILIPS Displays, 디바이스 연구소) ;
  • 고남제 (LG. PHILIPS Displays, 디바이스 연구소) ;
  • 이동구 (금오공과대학교, 신소재시스템공학부)
  • Published : 2002.06.01

Abstract

The carbon nanotube emitters for field emission displays were fabricated by using screen printing techniques. The pastes for screen printing are composed of organic binders, carbon nanotubes (multiwalled or singlewalled), and some additive materials. The pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. From the I-V characteristics, the turn-on field of SWNT was lower than that of MWNT. The decrease in the mesh size of screen masks (i.e. increase in the opening size of the screen mesh) resulted in decreasing the turn-on field and increasing the electron emission current. When the carbon nanotubes were mixed with silver pastes, silver powders appeared to contribute to the vertically aligning of carbon nanotubes on a glass.

Keywords

References

  1. Iijima S., Nature, 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. C.A. Spindt, I. Brodie, L. Humphery, E.R. Westberg, J. Appl. Phys., 47, 5248 (1976) https://doi.org/10.1063/1.322600
  3. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M. P. Siegal, P.N. Provencio, Science, 282, 1105 (1998) https://doi.org/10.1126/science.282.5391.1105
  4. P.G. collins, A. Zettl, Phys. Rev., B55, 9391 (1997)
  5. H. Schmid, H. W. Fink, Appl. Phys. Lett, 70, 2679 (1997) https://doi.org/10.1063/1.118978
  6. A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D. Colbert, R.E. Smalley, Science, 269, 1550 (1995) https://doi.org/10.1126/science.269.5230.1550
  7. W.A. de Heer, A. Chatelain, D. Ugarte. Science, 270, 1179 (1995) https://doi.org/10.1126/science.270.5239.1179
  8. Jie Liu, Andrew G. Rinzler, Hongjie Dai, Jason H. Hafner, R. Kelley Bradley, Peter J. Boul, Adrian Lu, Terry Lverson, Konstantin Shelimov, Chad B. Juffman, Fernando Rodreguez-Marias, Young-Seok Shon, T. Randall lee, Daniel T.Colbert, Richard E. Smalley, Science(Reports), 280, 22 (1998)
  9. Anchal Srivastava, A.K. Srivastava, O.N. Srivastava, Carbon, 39, 201 (2001) https://doi.org/10.1016/S0008-6223(00)00105-6
  10. Ph. Lambin, V. Meunier, L. P. Biro, Carbon, 36(5), 701 (1998) https://doi.org/10.1016/S0008-6223(98)00043-8