On-Line Aircraft Parameter Identification Using Fourier Transform Regression With an Application to NASA F/A-18 Harv Flight Data

  • Song, Yongkyu (School of Aerospace and Mechanical Engineering, Haukuk Aviation University) ;
  • Song, Byungheum (Department of Flight Operation, Hankuk Aviation University) ;
  • Seanor, Brad (Department of Mechanical and Aerospace Engineering, West Virginia University) ;
  • Napolitano, Marcello R. (Department of Mechanical and Aerospace Engineering, West Virginia University)
  • 발행 : 2002.03.01

초록

This paper applies a recently developed on-line parameter identification (PID) technique to sets of real flight data and compares the results with those of a state-of-the-art off-line PID technique. The on-line PID technique takes Linear Regression from Fourier Transformed equations and the off-line PID is based on the traditional Maximum Likelihood method. Sets of flight data from the NASA F/A-18 High Alpha research Vehicle (HARV) circraft, which has been recorded from specifically designed maneuvers and used for our line parameter estimation, are used for this study. The emphasis is given on the accuracy and on-line measure of reliability of the estimates. The comparison is performed for both longitudinal and lateral-directional dynamics for maneuvers at angles of attack ranging u=20°through $\alpha$=40°. Results of the two estimation processes are also compared with baseline wind tunnel estimates whenever possible.

키워드

참고문헌

  1. Bodson, M., 1995, 'An Information-Dependent Data Forgetting Adaptive Algorithm,' Proceedings of the 1995 American Control Conference, Seattle, WA.
  2. Brinker, J. S., Wise, K. A., 1999, 'Nonlinear Simulation Analysis of a Tailless Advanced Fighter Aircraft Reconfigurable Flight Control Law,' Proceedings of the 1999 AIAA Guidance Navigation and Control Conference, AIAA Paper 99-4040, Portland, OR.
  3. Campa, G., Fravolini, M. L., Song, Y., Napolitano, M., Seanor, B., 2001, 'Application of an improved LWR Mehod to On-Line Aircraft Parameter Estimation Problems,' To be presented at 2001 IFAC Symposium on Automatic Control in Aerospace, Bologna, Italy
  4. Calise, A. J., Lee, S., Sharma, M., 1998, 'Direct Adpative Reconfigurable Control of a Tailless Fighter Aircraft,' Proceedings of the 1998 AIAA Guidance Navigation and Control Conferecne, AIAA Paper 98-4108, Boston, MA.
  5. Chandler, P., Patcher, M., Mears, M., 1995, 'System Identification for Adaptive and Reconfigurable Control,' AIAA Journal of Guidance, Control and Dynamics, Vol. 18, No. 3, pp. 516-524 https://doi.org/10.2514/3.21417
  6. Gelb, A. et al., 1973, Applied Optimal Estimation, MIT Press, Cambridge, Ma, 1973
  7. Hoak, D. E. and Finck, R. D., 1978, USAF Stability and Control DATCOM, AFWAL-TR-83-3048
  8. Haykin S. and Van Veen, B., 1999, Signals and Systems, John Wiley and Sons, Inc.
  9. Jorgensen, C. C., 1997, 'Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks,' NASA TM 112198
  10. Klein, V., 1978, 'Aircraft Parameter Estimation in Frequency Domain,' Proceedings of the 1978 AIAA Atmospheric Flight Mechanics Conference, AIAA paper 78-1344, Palo Alto, CA.
  11. Ljung, L., 1987, System Identification : Theory for the User, Prentice Hall, Englewood Cliffs, NJ.
  12. Maine, R. E., Iliff, K. W., 1985, Identification of Dynamic Systems: Theory and Formulation, NASA RP-1138
  13. Mendel, J. M., 1973, Discrete Techniques of Parameter Estimation, Marcel Dekker, New York, NY.
  14. Morelli, E. A., 1997, 'High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data,' NASA TM 110340
  15. Morelli, E. A., 1998, 'In Flight System Identification,' Proceedings of the 1998 AIAA Atmospheric Flight Mechanics Conference, AIAA pape 98-4261, Boston, MA.
  16. Morelli, E. A., 1999, 'Real-Time Parameter Estimation in the Frequency Domain,' Proceedings of the 1999 AIAA Atmospheric Flight Mechanics Conference, AIAA paper 99-4043, Portland, OR.
  17. Napolitano, M., An, Y., and Seanor, B. A., 'A fault tolerant flight control system for sensor and actuator failures using neural networks,' Aircraft Design, Vol. 3, pp. 103-128 https://doi.org/10.1016/S1369-8869(00)00009-4
  18. Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W., 1996, Applied Linear Regression Models, 3rd Ed., Richard D. Irwin, Inc., Burr Ridge, IL.
  19. Roskam, J., 1994, Airplane Flight Dynamics and Automatic Filght Controls: Part I, Roskam Aviation and Engineering Coorporation, Ottawa, KA.
  20. Rysdyk, R., Calise, A. J., 1998, 'Fault Tolerant Flight Control Via Adaptive Neural Network Augmentation,' Proceedings of the 1998 AIAA Guidance Navigation and Control Conference, AIAA Paper 98-4483, Boston, MA.
  21. Seanor, B., Song, Y., Napolitano, M. R., and Campa, G., 2001, 'Comparison of on-Line and Off-line Parameter Estimation Techniques Using the NASA F/A-18 HARV Flight Data,' To be presented at 2001 AIAA Atmopheric Flight Mechanics Conference, AIAA Paper No. 2001-4261