Embedding between Hypercube and HCN(n, n), HFN(n, n)

Jong-Seok Kim*** · Hyeong-Ok Lee*** · Yeong-Nam Heo***

ABSTRACT

It is one of the important measures in the area of algorithm design that any interconnection network should be embedded into another interconnection network for the practical use of algorithm. A HCN(n, n), HFN(n, n) graph also has such a good property of a hypercube and has a lower network cost than a hypercube. In this paper, we propose a method to embed between hypercube Q_n and HCN(n, n), HFN(n, n) graph. We show that hypercube Q_n can be embedded into an HCN(n, n) and HFN(n, n) with dilation 3, and average dilation is smaller than 2. Also, we have a result that the embedding cost, a HCN(n, n) and HFN(n, n) can be embedded into a hypercube, is O(n).

키워드 : 상호연결망(Interconnection Network), 임베딩(Embedding), 확장(Expansion)
HFN(n,n)를 하이퍼큐브 Q_n에 임의됨 하는 비유이 $O(n^2)$임을 보인다. 논문의 구성은 다음과 같다. 2장에서는 본 논문에서 제시하는 상호연결망에 대한 관련연구 문헌을 살펴보고, 3장에서는 하이퍼큐브와 HCN(n,n) 사이의 임배딩을 분석하고, 4장에서 결론을 남는다.

2. 관련 연구

상호 연결망은 각 프로세서를 노드로, 프로세서들 간의 통신 채널을 에지로 나타내는 무방향 그래프로 표현될 수 있다. 상호 연결망은 다음과 같이 무방향 그래프 $G=(V, E)$로 표현된다. 여기서 $V(G)$는 노드들의 집합, 즉 $V(G) = \{0, 1, 2, ..., N-1\}$이고, $E(G)$는 에지의 집합으로서 $V(G)$ 내의 임의의 두 노드 u와 v의 쌍 (u, v)로 이루어져다. $E(G)$는 각 노드 u와 v 사이에 통신 채널이 존재한다는 것이다. 상호 연결망을 평가하는 방 식들은 변자수(degree), 지름(diameter), 대칭성(symmetry), 확장성 scalability, 고장 수용도(fault tolerance), 방송(broadcasting) 및 임배딩(embedding) 등이 있다[1,5,10]. 지금까지 제시한 상호 연결망을 노드 수를 중심으로 분류하면 n^2개 노드를 갖는 예시, 2차원 노드를 갖는 하이퍼큐브, n개 노드를 갖는 스테그레프 부로 나눌 수 있다.

하이퍼큐브 Q_n은 2차원 노드와 2^k개의 에지로 구성된다. 각 노드의 주소는 n-비트 이진수로 표현될 수 있고, 임의의 두 노드의 주소가 정확히 1 비트만 다를 때 그들 사이에 에지가 존재한다. n-차원 하이퍼큐브 Q_n은 변자수와 지름이 각각 n을 가지면서 망비용(network cost)이 n^2인 정규그래프이다. 하이퍼큐브는 노드 및 에지 대칭이고, 단순한 계층 구조를 가지고 있어서 각종 응용 분야에서 요구되는 통신망 구조를 쉽게 제공할 수 있는 장점이 있으며, Intel iPSIC, nCUBE[12], Connection Machine CM-2[13], SGI Origin 2000 등의 시스템에서 사용되고 있다[9]. 또한 임배딩 관련에서 있어서 정리, 스파이드, 에이지 등의 같은 다른 연결망 구조들이 효율적으로 임배딩 될 수 있다는 장점이 있지만, 변자수와 비해 지름과 노드간의 평균 거리가 짧지 않은 단점이 있다. 이것은 하이퍼큐브가 에지의 용량을 효율적으로 사용하지 못함을 의미한다. 이러한 단점을 개선한 새로운 연결망으로 Hierarchical Cubic Network[6,11], Multiply-Twisted-Cube, Folded Hypercube[4], Hierarchical Folded Hypercube[3], Extended Hypercube 등이 있다.

Folded-Hypercube는 기존 하이퍼큐브에서 각 노드의 주소가 변자관계에 있는 노드들간에 에지의 한 개 추가한 것으로서 하이퍼큐브보다 변자수는 1 증가하지만 하이퍼큐브의 지름은 정확도 개선한 상호 연결망이다.

HCN(n,n)는 n-차원 하이퍼큐브 Q_n을 기본 모듈로 하고, 기본모듈 내부의 모든 노드들이 n-차원 하이퍼큐브 Q_n을 갖는다. HCN(n,n)은 2^n개의 노드와 변자수 $n+1$이고 ($n+1)2^{n-1}$개의 에지로 구성되어 있다. HCN(n,n)의 주소는 (I, J)로 표현하고, I는 기본 모듈을 나타내고 J는 기본 모듈 내의 노드를 표현한다. 기본 모듈 안의 노드를 연결하는 에지는 내부에 있으며, 기본 모듈 사이의 노드를 연결하는 에지는 외부에 있다. 외부 에지는 diameter link, non-diameter link로 나눌 수 있다. diameter link는 조건 $0 \leq J \leq 2^n - 1$과 $0 \leq J \leq 2^n - 1$을 만족하는 노드 (I,J)와 (J,J) 사이의 외부 에지를 말하는데 J와 J는 보수적 경계를 나타낸다. diameter link가 아닌 외부 에지는 non-diameter link로서, (I,J)와 (J,J)를 연결하는 에지이다.

HCN(n,n)의 구조는 HCN(n,n)의 정의에서 다음 두 가지의 에지 변형을 적용하여 구성된 그래프이다. 첫째, 하이퍼 큐브 내에 Folded-하이퍼큐브를 기본 모듈로 사용한다. 둘째, HCN(n,n)의 diameter link를 제거한다. HFN(n,n)은 2^n개 노드, 변자수 $n+2$이고 ($n+2)2^{n-1}-1$개의 에지로 구성된다.

(그림 1) 하이퍼큐브와 Folded-하이퍼큐브

(그림 2) HCN(3,3)

(그림 3) HFN(3,3)

Non-diameter Links, Diameter Links

I/O channel

102 정보처리학회논문지 A 제9-4권 제2호(2002.8)
3. 임베딩

그래프의 임베딩(embedding)은 어떤 그래프 G가 다른 그래프 H 구조에 포함 혹은 어떻게 연관되어 있는지를 알 mogę하기 위해, 어떤 특정한 그래프를 다른 그래프에 상충(mapping)하는 것이다. 그래프 G의 그래프 H에 대한 임베딩 f는 다음과 같이 정의되는 함수의 쌍 (ϕ, ρ)를 말한다.

ϕ는 G의 정점 집합 $V(G)$를 H의 정점 집합 $V(H)$에 대응시키는 함수이고, ρ는 G의 양의 경로 $e = (u, v)$에서 $\phi(u)$의 경로의 주기 $\phi(\rho)$를 잇는 H상의 경로로 대응시키는 함수이다. 임베딩의 비용을 나타내는 친절도는 연결성(dilation), 협잡성(congestion), 확장성(expansion)이 사용되고 있다. 그래프 G에 가려 e의 연결성을 H상에서의 경로 $\rho(e)$의 길이를 말하고, 임베딩 f의 연결성을 G의 모든 양의 경로의 연결성의 최대값에 대해 곧. 그래프 H의 가리는 경로의 길이를 e'의 연결성을 포함하는 $\rho(e')$의 계수를 말하고, 임베딩 f의 복잡성을 H의 모든 양의 경로의 길이를 나타낸다. 임베딩 f의 연결성을 G의 정점의 개수에 대한 H의 정점의 개수의 비율을 말한다.

정리 1: $2n$-차원 하이퍼큐브 Q_2n의 노드 $HCN(n, n)$에 연결을 3, 확성 1, 2로 임베딩 가능하다.

증명: $2n$-차원 하이퍼큐브 Q_2n의 노드 $H = \{h_1, h_2, \ldots, h_{2n}\}$와 $H' = \{h_1', h_2', \ldots, h_{2n}'\}$은 i-차원 비슷이($1 \leq i \leq 2n$) 의해 연결된 노드를 가정하고, $HCN(n, n)$의 노드 $S = \{s_1, s_2, \ldots, s_{2n}\}$, $S' = \{s_1', s_2', \ldots, s_{2n}'\}$의 $2n$-차원 하이퍼큐브 Q_2n의 노드 H를 $HCN(n, n)$의 노드 S로 사상했다. $HCN(n, n)$의 노드 S의 비트스트링을 사용하여 S'의 비트스트링을 연결하는데는 $HCN(n, n)$의 비슷의 개수를 통하여 연결성을 분석한다. 하이퍼큐브 Q_2n의 노드 H와 연결된 H'의 비트스트링에 따라서 아래의 경우로 나눌 수 있다.

경우 1: $h_1 = h_1', h_2 = h_2', \ldots, h_n = h_n'$일 때: 하이퍼큐브 Q_2n의 노드 $H' = \{h_1', h_2', \ldots, h_{2n}'\}$이 인, 노드 $h_{2n} = h_{2n}', h_{2n} = h_{2n}'$일 때: 하이퍼큐브 Q_2n의 노드 H'가 사상된 $HCN(n, n)$의 노드 S의 비트스트링은 $(s_1, s_2, \ldots, s_{2n})$이므로, 노드 H'가 사상된 노드 S의 비트스트링은 $(s_1, s_2, \ldots, s_{2n})$이므로 경우 21에서 처리 연결된 non-diameter link를 사용할 필요가 없다. 그러므로 이 경우에는 연결성을 2이다.
이상의 2가지 경우에서 증명한 바와 같이 하이퍼커브 Q_{2n}는 $HCN(n,n)$에 연결을 3으로 임계당 가능하다.

따라서 2: $2n$-차원 하이퍼커브 Q_{2n}의 $HCN(n,n)$에 대한 임계당의 평균 연장율은 2 이다.

증명: $2n$-차원 하이퍼커브 Q_{2n}의 노드는 평준화된 연장율을 하이퍼커브 Q_{2n}의 모든 에지의 연장율을 하이퍼커브 Q_{2n}의 에지 중 가장 긴 것임을 에지의 연장율을 n^2h_{2n}으로 하므로, 평균의 평균 연장율은 2가 된다.

증명: $2n$-차원 하이퍼커브 Q_{2n}의 노드 $H = (h_1 h_2 \cdots h_{2n-1} \cdots h_{2n})$와 $H' = (h'_1 h'_2 \cdots h'_{2n-1} \cdots h'_{2n})$는 i-차원 에지($1 \leq i \leq 2n$)에 의해 임계당 노드 S_{2n}를 가정하고, $HCN(n,n)$의 노드 $S = (s_1 s_2 \cdots s_{n-1} \cdots s_{2n})$이 가정하자. $HCN(n,n)$의 노드 S는 노드 H로 평준화된 $HCN(n,n)$의 노드 S를 Q_{2n}의 노드 H로 평준화된 $HCN(n,n)$의 노드 H'의 비트스트링에 에지의 비트스트링을 생성하는데 적용되는 하이퍼커브 Q_{2n}의 에지의 개수를 통하여 연장율을 분석한다. 노드 S와 임계당 S'의 비트스트링에 따라서 아래의 경우로 나눌 수 있다.

경우 1. $s_1 s_2 \cdots s_{n-1} s'_{n-1} \cdots s_{2n} = s_1 s'_{2} \cdots s_{2n}$인 경우 $HCN(n,n)$의 노드 S가 Q_{2n}의 노드 H의 비트스트링은 $(h_1 h_2 \cdots h_{n-1} \cdots h_{2n})$이므로, 노드 S'가 Q_{2n}의 노드 H'의 비트스트링은 $(h'_{2n} h'_{2n-1} \cdots h'_{2} \cdots h_1)$이므로, $1 \leq i \leq n$, $n+1 \leq j \leq 2n$. 노드 H와 H'의 비트스트링에서 오직 j 번째에 있는 비트만 서로 보수 관계이므로, 노드 H와 H'는 Q_{2n}의 동일한 기본 모듈 내부에 있는 노드임을 알 수 있고, Q_{2n}의 정의에 의해 노드 H와 H'는 서로 간접의 노드이다. 따라서 $HCN(n,n)$의 노드 S가 Q_{2n}의 노드 H와 H'에 각각 사상할 때 연장율은 1으로 임계당 가능함을 알 수 있다.

고개 2. $s_1 s_2 \cdots s_m = s'_1 s'_2 \cdots s'_{m}$인 경우 $HCN(n,n)$의 노드 S가 사상된 Q_{2n}의 노드 H와 H'의 비트스트링은 $(h_{2n} h_{2n-1} \cdots h_1 h_{2n})$이고, 노드 S'가 사상된 노드 H'의 비트스트링은 $(h'_{2n} h'_{2n-1} \cdots h_1 h_{2n})$이므로, $1 \leq i \leq n$, $n+1 \leq j \leq 2n$. Q_{2n}의 정의에 의해 노드 H와 H'가 연결되기 위해서는 서로 다른 비트스트링존들과의 격차가 없어야 한다. 노드 H와 H'의 비트스트링은 $2n$개이므로 노드 H와 H'의 보수관계일 때 두 노드의 연결을 위해 필요한 에지의 개수는 2이다. 따라서 $HCN(n,n)$의 노드 S와 S'를 Q_{2n}의 노드 H와 H'에 각각 사상할 때 연장율은 2으로 임계당 가능함을 알 수 있다.

이상의 2가지 경우에서 증명한 바와 같이 $HCN(n,n)$을 Q_{2n}으로 임계당 했을 때 연장율은 $O(n)$이다.

포사 3: $HCN(n,n)$은 $2n$-차원 하이퍼커브 Q_{2n}에 임계당하는 비용은 $O(n)$이다.

증명: $2n$-차원 하이퍼커브 Q_{2n}의 노드 $H = (h_1 h_2 \cdots h_{2n-1} \cdots h_{2n})$와 $H' = (h'_1 h'_2 \cdots h'_{2n-1} \cdots h'_{2n})$는 i-차원 에지($1 \leq i \leq 2n$)에 의해 임계당 노드 $D = (d_1 d_2 \cdots d_{n-1} \cdots d_{2n})$, $D' = (d'_{1} d'_{2} \cdots d'_{n-1} \cdots d'_{2n})$라 가정하기. 하이퍼커브 Q_{2n}의 노드 H를 $HCN(n,n)$의 노드 D로 Q_{2n}의 노드 H'를 $HCN(n,n)$의 노드 D'로 사상했을 때, D의 비트스트링에서 D'의 비트스트링을 결정하는데 적용되는 $HCN(n,n)$의 에지의 개수를 통하여 연장율을 분석한다. 노드 H와 H'의 비트스트링에 따라서 아래의 경우로 나눌 수 있다.

경우 1. $h_1 h_2 \cdots h_{n-1} h_{n-1} \cdots h_{2n}$이므로, 노드 D의 비트스트링은 $(d_1 d_2 \cdots d_{n-1} \cdots d_{2n})$이고, 노드 D'의 비트스트링은 $(d'_{1} d'_{2} \cdots d'_{n-1} \cdots d'_{2n})$인 ($1 \leq i \leq n$, $n+1 \leq j \leq 2n$). 노드 D와 D'의 비트스트링에서 오직 j 번째에 있는 비트만 서로 보수 관계이므로, 노드 D와 D'는 $HCN(n,n)$의 동일한 모듈 내부에 있는 노드임을 알 수 있고, $HCN(n,n)$의 정의에 의해 노드 D와 D'는 서로 간접의 노드이다. 따라서 노드 D와 D'의 비트스트링에서 오직 j 번째에 있는 비트만 서로 보수 관계이므로, 노드 D와 D'는 서로 간접의 노드이다.
드 D와 D'는 하나의 내부에 연계되어 있으므로, 하이퍼크로아 Q_{2a}의 노드 H와 H'를 $HFN(n,n)$의 노드 D와 D'에 각각 사상할 때 연장을 1로 임베딩 가능함을 알 수 있다.

이 경우 2. $h_1h_2h_3 \equiv 0$로 연계될 때, Q_{2a}의 노드 H가 사상된 $HFN(n,n)$의 노드 D와 D'의 비트스트립은 $(d_1d_2 \ldots d_n \overline{d_n} \overline{d_1} \overline{d_2} \ldots \overline{d_n})$이고, 노드 H'가 사상된 노드 D'의 비트스트립은 $(d_1' \overline{d_1}' \overline{d_1} \overline{d_2} \ldots \overline{d_n})$이다 ($1 \leq i \leq n, n+1 \leq j \leq 2n$).

노드 D와 D'의 비트스트립에서 i번째에 있는 비트만 보수관계임으로 D와 D'는 $HFN(n,n)$의 서로 다른 모든 내부에 있는 노드임을 알 수 있다. 사상된 $HFN(n,n)$의 노드 $(d_1d_2 \ldots d_n \overline{d_n} \overline{d_1} \overline{d_2} \ldots \overline{d_n})$을 non-diameter link에 의해 $(d_1d_2 \ldots d_n d_n \overline{d_1} \overline{d_2} \ldots \overline{d_n})$에 연결한다. 연결된 노드 $(d_1d_2 \ldots d_n \overline{d_n} \overline{d_1} \overline{d_2} \ldots \overline{d_n})$을 모 두에 있는 노드 $(d_1d_2 \ldots d_n d_n \overline{d_1} \overline{d_2} \ldots \overline{d_n})$에 연결한다. 연결된 노드 $(d_1d_2 \ldots d_n \overline{d_n} \overline{d_1} \overline{d_2} \ldots \overline{d_n})$은 non-diameter link에 의해 $(d_1d_2 \ldots d_n d_n \overline{d_1} \overline{d_2} \ldots \overline{d_n})$에 연결한다. 따라서 Q_{2a}의 노드 H와 H'가 사상된 $HFN(n,n)$의 노드 D와 D'에 각각 사상할 때 연장을 3으로 임베딩 가능함을 알 수 있다.

이상의 2가지 경우에서 증명한 바와 같이 Q_{2a}는 $HFN(n,n)$에 연장을 3으로 임베딩 가능하다.

이유에 5 : $2n$-차원 하이퍼크로아 Q_{2a}은 $HFN(n,n)$에 연계하고 있는 $2n$-차원 하이퍼크로아 Q_{2a}의 $HFN(n,n)$에 대한 임베딩의 평균 연장은 2 이하이다.

증명 : $2n$-차원 하이퍼크로아 Q_{2a}는 $HFN(n,n)$에 연계하고 있는 $2n$-차원 하이퍼크로아 Q_{2a}의 모든 계의 연장은 d_{2a}에서 모든 계의 연장을 합하여 전체 계의 개수로 나눈 값이다. Q_{2a}의 노드는 $HFN(n,n)$의 노드와 일치하는 사상이고, Q_{2a}의 계 중 연장을 1을 갖는 계는 \mathfrak{d}^{2a}개이고, 연장을 2를 갖는 계는 \mathfrak{d}^{2a}개이기 때문에 계의 개수는 \mathfrak{d}^{2a}개이다. 따라서 평균 연장은

$$\frac{(n\times 2^{2a-1}+2n\times 2^{2a-1}-6\times 2^{2a-1}-n\times 2^{2a-1}-n\times 2^{2a-1})}{(2\times 2^{2a-1}-1)}$$

가 된다. 이는 $2\times 2^{2a-1}-1$으로 다소 더 작은 값을 갖는다. □

정리 6 : $HFN(n,n)$은 $2n$-차원 하이퍼크로아 Q_{2a}에 임베딩가능한 비트스트립은 $O(n)$이다.

증명 : $2n$-차원 하이퍼크로아 Q_{2a}의 노드 $H = (h_1h_2 \ldots h_{2n})$와 $H' = (h_1h_2 \ldots h_{2n})$는 i-차원 계의 ($1 \leq i \leq 2n$)에 의해 연계된 노드라 가정하고, $HFN(n,n)$의 노드 $D = (d_1d_2 \ldots d_n d_n \overline{d_1} \overline{d_2} \ldots \overline{d_n})$과 $D' = (d_1' \overline{d_1}' \overline{d_1} \overline{d_2} \ldots \overline{d_n})$가 동일하다. 따라서 $HFN(n,n)$의 노드 D를 하이퍼크로아 Q_{2a}의 노드 H로 사상시켰을 때, H의 비트스트립에서 H'의 비트스트립을 연결하는 적절하는 하이퍼크로아 Q_{2a}의 계의 개수를 통하여 연장성을 분석한다. 노드 D와 D'의 비트스트립에 따라서 이상의 경우로 나눌 수 있다.

이 경우 1. $d_1d_2 \ldots d_n = d_1' \overline{d_1}' \overline{d_1} \overline{d_2} \ldots \overline{d_n}$이면 $d_{2a+1} \ldots d_{2n} = d_{2a+1}' \overline{d_1}' \overline{d_1} \overline{d_2} \ldots \overline{d_n}$일 때 : $HFN(n,n)$의 노드 D가 사상된 $2n$-차원 하이퍼크로아 Q_{2a}의 노드 H의 비트스트립은 $(h_1h_2 \ldots h_{2n})$이고, 노드 D'가 사상된 노드 H'의 비트스트립은 $(h_1h_2 \ldots h_{2n})$이기 때문에 노드 H와 H'의 비트스트립에서 적절한 j번째에 있는 비트만 서로 보수관계이므로, 노드 H와 H'는 하이퍼크로아 Q_{2a}의 동일한 기본 모듈 내부에 있는 노드임을 알 수 있고, Q_{2a}의 경우에 의해 노드 H와 H'는 서로 연계된 노드이다. 따라서 $HFN(n,n)$의 노드 D를 Q_{2a}의 노드 H와 H'에 각각 사상할 때 연장을 1로 임베딩 가능함을 알 수 있다.

이 경우 2. $d_1d_2 \ldots d_n = d_1' \overline{d_1}' \overline{d_1} \overline{d_2} \ldots \overline{d_n}$이면 $d_{2a+1} \ldots d_{2n} = d_{2a+1}' \overline{d_1}' \overline{d_1} \overline{d_2} \ldots \overline{d_n}$일 때 : $HFN(n,n)$의 노드 D가 사상된 $2n$-차원 하이퍼크로아 Q_{2a}의 노드 H의 비트스트립은 $(h_1h_2 \ldots h_{2n})$이고, 노드 D'가 사상된 노드 H'의 비트스트립은 $(h_1h_2 \ldots h_{2n})$이기 때문에 노드 H와 H'의 비트스트립에서 적절한 j번째에 있는 비트만 서로 보수관계이므로, 노드 H와 H'는 하이퍼크로아 Q_{2a}의 동일한 기본 모듈 내부에 있는 노드임을 알 수 있고, Q_{2a}의 경우에 의해 노드 H와 H'는 서로 연계된 노드이다. 따라서 $HFN(n,n)$의 노드 D를 Q_{2a}의 노드 H와 H'에 각각 사상할 때 연장을 1로 임베딩 가능함을 알 수 있다.
드 H와 H'는 하이퍼큐브 Q_3^2의 동일한 기본 모듈 내부에 있는 노드임을 알 수 있고, Q_3^2의 정의에 의해 노드 H와 H'가 연결되기 위해서는 서로 다른 비트스트림 만큼의 예가 필요하다. 노드 H와 H'의 비트스트림에서 $n+1$부터 2번째 비트스트링이 보수관계에 있으므로 H와 H'가 연결되기 위해서는 n개의 예가 필요하다. 그러므로 HFN(n, n)의 노드 D와 D'를 Q_3^2의 노드 H와 H'에 각각 사상할 때 연장을 n으로 임베딩 가능함을 알 수 있다.

경우 3. $d_1 d_2 \ldots d_n \neq d_1' d_2' \ldots d_n'$일 때: HFN($n$, n)의 노드 D가 사상된 Q_3^2의 노드 H의 비트스트림은 ($h_1 h_2 \ldots h_n$)이고, 노드 D'가 사상된 노드 H'의 비트스트림은 ($h_1' h_2' \ldots h_n'$)이다. ($1 \leq i \leq n$, $n+1 \leq j \leq 2n$). Q_3^2의 정의에 의해 노드 H와 H'가 연결되기 위해서는 서로 다른 비트스트림 만큼의 예가 필요하다. 노드 H와 H'가 서로 다른 모듈에 위치해 있고, $h_1 \ldots h_n$과 $h_1' \ldots h_n'$가 보수관계에 평가 가장 많은 수의 예를 필요로 한다. 노드 H와 H'의 비트스트림은 $2n$개이므로 두 노드의 연결을 위해 필요한 예의 개수는 $2n$이다. 그러므로 HFN(n, n)의 노드 D와 D'를 하이퍼큐브 Q_3^2의 노드 H와 H'에 각각 사상할 때 연장을 $2n$으로 임베딩 가능함을 알 수 있다.

이상의 3가지 경우에서 증명한 바와 같이 HFN(n, n)을 하이퍼큐브 Q_3^2에 임베딩 하기 위해 필요한 예는 $O(n^2)$이다. □

4. 결론

본 논문에서는 하이퍼큐브보다 양방향이 개선된 HCN(n, n) 및 HFN(n, n)과 하이퍼큐브 Q_3^2 사이의 임베딩 방법을 제시하고, 그 결과를 이용하여 연장을 분석하였다. 임베딩 결과는 하이퍼큐브 Q_3^2를 HCN(n, n)과 HFN(n, n)에 연장을 3 확장한 1로 임베딩 가능함을 보였고, 평균 연장을 $O(n^2)$ 하임을 보였다. 또한, HCN(n, n)과 HFN(n, n)을 하이퍼큐브 Q_3^2에 임베딩하는 예가 $O(n^2)$임을 보였다. 이러한 결과는 하이퍼큐브에서 이미 개발된 여러 가지 알고리즘을 HCN(n, n)과 HFN(n, n)에서 효율적으로 이용할 수 있음을 의미한다.

참고 문헌