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Abstract: Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict

flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the

evolving structure and frequency of intense weather systems and by using neural network approach. Besides using

radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as

tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective

classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime,

area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural net-

work model was learned from the hydroclimatology of the relationships between weather system, rainfall produc-

tion and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF

model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

Key Words: Neural networks, Convective weather systems, Weather classifier, Flash flood forecasting, Hydrocli-

matology

1. INTRODUCTION

Floods are the most frequent natural hazard
in the United States: between 1989 and 1999,
floods took 988 lives and caused $4.5 billion
worth of damage (US Army Corps of Engi-
neers, 1999). Despite many advances in
weather forecasting over the last decades, the
need for accurate flood forecasting remains as
one of the most elusive challenges in opera-

tional hydrology. In this paper, we focus on

this problem, and present a Quantitative Flood
Forecasting (QFF) model which was designed
to forecast peak streamflow in small size wa-
tersheds up to 18 hours in advance.

The methodology adopted to develop a QFF
(Quantitative Flood Forecasting) model consists
of using neural networks as a data transforming
tool combining information from the state of the
atmosphere and its recent evolution along with
standard hydrometeorological data to issue
streamflow forecasts. The structure of the model
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is dictated by our understanding of the regional
hydrometeorology, flood hydrology and by an
empirically derived classification that establishes
relationships among data from different types of
sensors: streamflow and rain gauges, radiosondes,
and satellite imagery.

Neural networks have been applied to a
wide variety of hydrologic problems such as
precipitation forecasting (Kuligowski and Bar-
ros, 1998ab; Hall et al., 1999); streamflow
prediction (Imrie et al., 2000); tornado predic-
tion (Marzban and Stumpf, 1996);
classification (Bankert, 1994); sunspot pre-
1990); and
prediction of water quality parameters (Maier

cloud

diction (Koons and Gorney,
and Dandy, 1996) among others. Previous
work has demonstrated that neural networks
are appropriate to capture the complex
nonlinear rainfall-runoff relationships (Hsu et
al., 1995; Minns and Hall, 1996; Shamseldin,
1997; Campolo et al., 1999). Most previous
neural network applications of the rainfall and
restricted to short
lead-time for accurate forecasts: 1-5 hours
(Campolo et al., 1999), 30-75 minutes (Michaud
and Sorooshian, 1994), 2.5 hours (Amburn and
Fortin, 1993); 1-5 minutes (Jinno et al.,, 1993).

Typically, these studies are based on conceptual

runoff processes were

rainfall-runoff models and require that
raingauges need to be distributed within and, or
near the forecast watersheds. Also, the forecasts
are issued after the arrival of rainfall events.
Because the rainfall-runoff response times are in
the range of a few hours, this constitutes a
natural upper bound on forecast lead-times.
Here, our goal is to focus on operational
Quantitative Flood Forecasting (QFF) for ba-
sing where raingauges are not necessarily
available, and to extend the forecast lead-times
up to 18 hours in advance, which should pro-

Water Engineering Research, Vol. 3, No.2, 2002

with
enough time to implement flood control and

vide disaster management agencies
mitigation measures. The driving hypothesis is
that such long lead-times can be attained if the
synoptic evolution of atmospheric conditions
is taken into consideration. This includes the
classification of weather systems as they begin
to arrive at the region of interest, and the de-
tection and monitoring of convective weaher
systems which may or may not be embedded
in large-scale storms. Figure 1 shows the
schematic diagram of the new approach, which
indicates the difference between the new ap-
proach and the typical approach. Next, a de-
scription of the QFF model is in Section 2.
The QFF model was applied to the mid- tlantic
region of United States in a forthcoming paper.

2. DESCRIPTION OF THE QUANTI-
TATIVE FLOOD FORECASTING
MODEL

The overall approach to develop the QFF
model consisted in developing a multisensor
data-driven model using an expert system of
neural networks, the configuration of which is
determined by regional hydroclimatology, op-
erational data availability, and forecast criteria.
Hourly streamflow and rainfall data are used
to describe rainfall-runoff response, while ra-
diosonde and satellite data are used to describe
the evolving structure of regional weather.
This approach evolved from an existing Quan-
titative Precipitation Forecasting (QPF) model,
which was used to forecast point rainfall 6 to
12 hours in advance at more than one location
using only raingauge data and output from
Numerical Weather Prediction (NWP) models
(Kuligowski and Barros, 1998a,b). The ex-
isting QPF model was greatly modified to
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handle multisensor data at large spatial scales,
and to issue streamflow forecasts with long
lead-times. The synoptic evolution of atmos-
pheric conditions was taken into consideration
using satellite data in the weather classifier mod-
ule. Specifically, the foremost forecast criterion
is to capture the timing and magnitude of peak
flood discharge at least 18 hours in advance. Ta-
ble 1 shows the comparison between the previ-
ous approach and new approach.

The QFF model consists of three different

e Use convective weather system
information

e Wide range raingauge and radiosonde
network

e Forecast before rainfall arrival
e Long lead time (up to 18 hours)

Table 1. Comparison between the previous approach and the new approach.
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modules as illustrated schematically in Fig.
2(a).
surveyed to look for rainfall occurrences. If no

In the first module, the raingauges are

rainfall is detected in the study area, a no-rain
forecast is used. Next, the classification and
decision module is used to describe and clas-
sify current weather conditions using ra-
diosonde and satellite data. A second rain/no
rain forecast is issued based on the likelihood
that rain may, or may not occur at the forecast
locations within the prescribed lead-time (i.e.

Do not use convective weather system in-
formation

Raingauge network within or near water-
shed

Forecast after rainfall arrival

Short lead time

Table 2. Definitions and basic characteristics of convective weather systems
from satellite cloud imagery (Evans and Shemo, 1996)

Tropical Cyclones (CYC)

Published storm tracks are used to validate storm tracks analyzed by CCATS.

A tracking algorithm is used to follow the trajectory of tropical cyclones.
Systems are matched with MCC or CCC tracks as defined below.

Mesoscale Convective Complexes (MCC)

Size <-54°C region has area >50,000 km®
Duration >6 hours (2 frames in the case of ISCCP-B3)
Shape Eccentricity (minor axis/major axis) > 0.7

Convective Cloud Clusters (CCC)

Size <-54°C region has area >4,000 km®
Duration > 6 hours (2 frames in the case of ISCCP-B3)
Shape No shape criterion

Disorganized, Short-Lived Convection (DSL)

Size Temperature <-54°C for at least one pixel
(i.e. Minimum size determined only by satellite resolution)
Duration 3 hours or less (1 frame in the case of ISCCP-B3)

Shape No shape criterion
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Table 3. Basic statistics of convective weather systems in our study region during 1989 - 1993

Number 7 50 1,470 7,018
Average Life - 14 6 <3

Area (km?) 42,690 239,920 132,850 15,654
Temperature 212 214 214 216
Eccentricity 0.75 0.70 0.53 0.61

Table 4. Summary of the different neural network configurations used in the QFF model

Convective weather systems are present, and all predictor raingauges are

¢4

wet.
C3 raingauges are wet.
R4 ; gauges are wet.
R3 & .
predictor raingauges are wet.
Combined = -

Convective weather systems are present, and more than 75% of predictor
Convective weather systems have not been detected, and all predictor rain-

Convective weather systems have not been detected, and more than 75% of

Various combinations of C4, C3, R4 and R3 based on data availability.

the next 18 hours). If a positive rain forecast is
issued by the second module, then the con-
figuration of the neural network model will be
selected according to the weather conditions
(e.g. weather class) and as a function of input
data available. CCATS (Convection Classifi-
cation and Automated Tracking System), an
algorithm developed by Evans and Shemo
(1996) was used to analyze infrared satellite
data. The classification criteria and the basic
characteristics of each convective class are
presented in Table 2. For this work, only five
years of data between 1989 and 1993 were
available, and Table 3 provides a summary of
the basic statistics of the convective systems
identified in this five-year period in our region
of study. Finally, the forecast module con-
sists of a system of neural network models
with at least four different configurations for
each weather class. Hourly rainfall at four lo-

cations (i.e. predictor raingauges) and stream-
flow at the predicted gauge are respectively
the inputs and outputs to the selected neural
network model. The neural network output is
an hourly streamflow forecast at the desired
location at the desired time (desired time =
current time + forecast lead-time). Detailed
descriptions of the classification and forecast
modules are presented in the following sec-

tions.

2.1 Weather Classifier

Appropriate selection of the neural network
model configurations depends on the effec-
tiveness of the weather classification module
in relating streamflow at a specific location,
rainfall at four raingauges, and regional at-
mospheric conditions. Indeed, a key element
of the QFF model is the selection of the four

predictor raingauges among the available
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Fig. 1. The schematic diagram of the new approach
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(b) Flowchart of the weather classifier
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meteorologist. This combines advantages of
automated and manual classification methods.
Kohonen self-organizing feature maps are now
beginning to be applied for classification prob-
lems in hydrology (Hall and Minns, 1999;
Barros and Kuligowski, 1996). In this study,
we used a more physical classification method
using expert knowledge of convective weather
system with conditional correlation analysis.
Analysis of model performance according to
the different weather classification methods
remains a challenging topic.

The schematic of the weather classifier is
illustrated in Fig. 2(b). The optimal combina-
tion of predictor raingauges for each weather
class was selected based on statistical analysis
between the streamflow gauges and the available
raingauges. Correlation analysis between stream-
flow and rainfall was conducted for each fore-
cast location as a function of the weather class
type (e.g. MCC or CCC), origin and moving
direction of the weather system, and also as a
function of the distance between its current
location of the weather system and its location
at the time for which the forecast is issued.
Two zones of influence were considered:
zonel and zone 2, respectively for distances
less than and greater than 300 km, the charac-
teristic spatial scale of synoptic weather sys-
tems in the mid-Atlantic region. When more
than one type of weather system was identified,
the priority was given to MCCs over CCCs,
and when several convective systems of the
same type were identified, the priority was
given to the weather system nearest to the
streamflow gauge for which location the fore-
cast is desired (i.e. the predicted location). For
each weather class, the four raingauges that
exhibit the highest correlation with the stream-

flow gage were selected as predictor gauges.
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For each weather class, a suite of neural net-
work models was subsequently trained using
the data from the corresponding four predictor
raingauges as input.

When no convective systems are detected in
the satellite imagery, the weather classification
is made according to the radiosonde wind data.
The predictor raingauges are selected in this
case as a function of the wind direction at the
radiosonde location, and at the pressure level
for which the highest correlation between
streamflow and rainfall occurs when south-
westerly storm systems approach the area of
interest. This criterion is based on the regional
hydroclimatology of floods that relates south-
westerly rainstorms with heavy precipitation
and extended flooding as mentioned earlier in
the manuscript. In fact, about 70% of all
weather systems approach the lee side of the
Appalachian mountains from the W-SW-S,
which is consistent with the predominant tra-
jectories of convective systems. Table 4 pro-
vides a description of the four neural network
model configurations used to issue four dif-
ferent types of forecasts in this study.

2.2 Neural Networks

Artificial neural networks are data-pro-
cessing systems that can learn the relationships
between a pair of one- or multi- dimensional
data sets by tuning a set of model parameters.
These parameters (weights) form a mapping
from a set of given values (inputs) to an asso-
ciated set of values (outputs). The process of
tuning the weights to the correct value (i.e.
training) is carried out by passing a large
number of input-output pairs through the
model and adjusting the weights to minimize
the error between the observed and predicted
data. The practical advantages and limitations
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of neural networks in forecast applications
have been discussed by Maier and Dandy
(1996) and Kuligowski and Barros (1998a,b)
among others, while Hassibi et. al. (1994,
1995) demonstrated theoretically why neural
networks are robust estimators of nonlinear
phenomena. In principle, the self- learning
nature of a neural network allows it to forecast
without extensive prior knowledge of all the
processes involved. However, because data
analysis techniques are unable to evaluate the
generality of the relationships that they find,
the data sets used for training must be repre-
sentative of the physically-based dynamical
range of the forecasts. That is why the applica-
tion of neural networks in environmental prob-
lems cannot be successful without a good
understanding of the physics involved, and
without a hypothesis as to how different proc-
esses (and their state variables) interact with
each other.

A schematic diagram of the basic architec-
ture of multi-layer artificial neural networks is

shown in Fig. 3. In this study, the neural net-

A

F(x)

Flow of
activation
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works are composed of three layers including
input layer, hidden middle layer, and output
layer. Each node of the hidden layer receives a
signal from every node in the input layer. Be-
sides the data at the four predictor raingauges,
the current streamflow is also used as input to
the neural network model. The number of
nodes in the hidden layer is an important pa-
rameter with respect to the computational effi-
Fletcher
and Goss (1993) proposed a number ranging
from (2n+1) to (2n°’+m), where n is the num-

ber of input nodes and m is the number of

ciency of the neural network model.

output nodes. Although this formula provides
an useful guideline, the best results are ob-
tained by trial- and-error experiments (Kuli-
gowski and Barros 1998a,b; Swingler, 1996).
In the case of our applications, best results
were obtained using only three hidden layer
nodes. The effective incoming signal to node j
is the weighted sum of all input signals:

m

hj = Z Wt

i=

(= Lyeryn) (1)

Output layer

Hidden layer

Input layer

Fig. 3. Schematic of the artificial neural network configuration
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where m is the total number of neurons in the
input layer, n is the total number of neurons in
the hidden layer, w is the weight assigned to
the path from i to j, r; is input from unit 7 and
h; is value at unit j of hidden layer. Subse-
quently, the combined signal is modified by
the so-called transfer function to produce the
output signal:

0k=Zwk,-f(h,~)=lelg-f( ) W,-,-n] k=1, ..., ])
2

where f denotes the selected transfer function,
w is the weight assigned to the path from / to k£,
o, is network output and / denotes total num-
ber of nodes in the output layer.

A nonlinear transfer function (the sigmoidal
function) allows the neural networks to con-
sider nonlinear relationships between input
and output data:

2
l+ae™

f(h)= )

where A is input to the node, f(#) is the node
output, « is the gain which is introduced to
consider nonlinear behavior of input data.

The training process consists in determining
a new sct of weights that minimizes the mean
squared error E of the output:

E = Zl: (@, - Ok)z )
k=1

where 1 is the desired output at the output
node k.

Because the transfer function is nonlinear,
the error E will be a nonlinear function of the
weights w. The steepest descent method was
the nonlinear minimization technique adopted.

Accordingly, the weights are adjusted as fol-
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lows:

JE , OE E
Aw= -y P -(- Ay ! Plhw),, = lld—vﬁﬁk PAW )
&)

where 1 is learning rate which tells the net-
work how quickly the weights must be
changed and B is the fraction of average
change in the weights. The momentum term

B(AW)olq
avoid local minima. Both 1 and B are typically

is added to the weight adjustment to

between zero and one, and are estimated by
trial and error method (Maier and Dandy,
1996). Values of 0.001 for the learning rate 1),
0.01 for the fraction of average change in
weights B, and 2.0 for the gain parameter o
gave satisfactory results for the applications
reported here.

The QFF model will be tested in 2 small
watersheds along the leeward side of the Ap-
palachian mountains in the mid-Atlantic re-
gion where the hydroclimatology of floods is
characterized by the recurrence of floods in
small to medium watersheds. Such watersheds
have a short response time for flooding, and
are typically located in regions of complex
orography, with narrow valleys and relatively
strong relief. Often these watersheds are in-
strumented with streamflow gauges, but not
with raingauges. At these locations, orographic
effects on storm duration and intensity lead to
the occurrence of heavy rainfall and leads to
extreme floods (Barros and Kuligowski, 1998),
Results will be presented in a forthcoming

paper.

3. CONCLUSION

This study proposes an operational flood
forecasting model for ungauged watersheds in
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the mid-Atlantic region using a data-driven
approach. While physically-based numerical
weather prediction and river routing models
cannot accurately depict complex natural
non-linear processes, based on scientific un-
derstanding of regional hydrometeorology
with multisensor data and expert information
system such as neural networks, the developed
model can lead to significant gains in the
forecast skill of extreme rainfall and associ-
ated floods. Therefore, the proposed model
should be viewed as a strong alternative in

operational hydrology.
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