Spontaneous Release of Glycosylphosphatidylinositol (GPI)-anchored Renal Dipeptidase from Porcine Renal Proximal Tubules

  • Park, Sung-Wook (Department of Pharmacy, College of Pharmacy) ;
  • Kang, Bok-Yun (Department of Pharmacy, College of Pharmacy) ;
  • Yoon, Hyun-Joong (Department of Biological Sciences, College of National Science, Chonnam National University) ;
  • Park, Eun-Mi (Department of Pharmacy, College of Pharmacy) ;
  • Choi, Kyong (Department of Biological Sciences, College of National Science, Chonnam National University) ;
  • Lee, Hwang-Hee Blaise (Department of Biological Sciences, College of National Science, Chonnam National University) ;
  • Hooper, Nigel M. (Proteolysis Research Group, School of Biochemistry and Molecular Biology, University of Leeds) ;
  • Park, Haeng-Soon (Department of Pharmacy, College of Pharmacy)
  • Published : 2002.02.01

Abstract

The incubation of porcine renal proximal tubules (PTs) resulted in the release of the Glycosylphosphatidylinositol (GPI)-anchored renal dipeptidase (RDPase, EC 3. 4. 13. 19) from the membrane after a lag period of approximately 6 hours. This spontaneous release of RDPase from the membrane was inhibited by antibiotics. When the incubation supernatant was added back to fresh PTs, both the antibiotic inhibition of RDPase release and the lag period disappeared. The released RDPase reacted with an anti-cross reacting determinant antibody indicating the presence of the Ins (1, 2-cyc)P. These results suggest that bacteria in the PTs, when incubated, grow find Secrete a phosphatidylinmsitol-specific phospholipase C (PIPLC). This enzyme then hydrolyses the GPI-anchored RDPase and is transferable. RDPase was purified following its release from the membrane by this simple and inexpensive method which may also be applied to other GPI-anchored proteins.

Keywords

References

  1. Adachi, H., Kubota, I., Okamura, N., Iwata, H., Tsujimoto, M., Nakazato, H., Nishihara, T., and Noguchi, T., Purification and characterization of human microsomal dipeptidase, J. Biochem.,105, 957-961 (1989) https://doi.org/10.1093/oxfordjournals.jbchem.a122787
  2. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  3. Brewis, I. A., Turner, A. J., and Hooper, N. M., Activation of the glycosylphosphatidyl-inositol-anchored membrane dipeptidase upon release from pig kidney membranes by phospholipase C, Biochem. J, 303, 633-638 (1994) https://doi.org/10.1042/bj3030633
  4. Broomfield, S. J., and Hooper, N. M., Characterization of an antibody to the cross-reacting determinant of the glycosyl-phosphatidylinositol anchor of human membrane dipeptidase. Biochim. Biophys. Acta, 1145, 212-218 (1993) https://doi.org/10.1016/0005-2736(93)90291-7
  5. Campbell, B. J., Baker, S. F., Shukla, S. D., Forrester, L. J., and Zahler, W. L., Bioconversion of leukotriene D$_4$ by lung dipeptidase, Biochim. Biophys. Acta, 1042, 107-112(1990) https://doi.org/10.1016/0005-2760(90)90063-4
  6. Campbell, B. J., Lin, Y. C., and Bird, M. E., Renal aminopeptidase- and copper-activated peptide hydrolysis, J Biol. Chem., 238, 3632-3640 (1963)
  7. Campbell, B. J., Lin, Y. C., Davis, R. V., and Ballew, E., The purification and properties of a particulate renal dipeptidase, Biochim. Biophys. Acta, 118, 371-386 (1966) https://doi.org/10.1016/S0926-6593(66)80046-2
  8. Cook, W. F., and Pickering, G. W., A rapid method for separating glomeruli from rabbit kidney, Nature, 182, 1103-1104 (1958) https://doi.org/10.1038/1821103a0
  9. Farrell, C. A., Allegretto, N. J., and Hitchcock, M. J., Cilastatin sensitive dehydropeptidase I enzymes from three sources all catalyze carbapenem hydrolysis and conversion of leukotriene $D_4$ to leukotriene $E_4$, Arch. Biochem. Biophys., 256, 253-259 (1987) https://doi.org/10.1016/0003-9861(87)90443-7
  10. Ferguson, M. A., Glycosyl-phosphatidylinositol membrane anchors: the tale of a tail, Biochem. Soc. Trans., 20, 243-256 (1992) https://doi.org/10.1042/bst0200243
  11. Ferguson, M. A., Low, M. G., and Cross, G. A., Glycosyl-sn-1,2dimyristyl- phosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein, J. Biol. Chem., 260, 14547-14555 (1985)
  12. Fukumura, Y., Kera, Y., Oshitani, S., Ushijima, Y., Kobayashi, I., Liu, Z., Watanabe, T., Yamada, R., Kikuchi, H., Kawazu, S., and Yabuuchi, M., Behaviour of urinary dipeptidase in patients with chronic renal failure, Ann. Clin. Biochem., 36, 221-225 (1999) https://doi.org/10.1177/000456329903600215
  13. Griffith, O. H., and Ryan, M., Bacterial phosphatidylinositol-specific phospholipase C: structure, function, and interaction with lipids, Biochim. Biophys. Acta, 1441, 237-254 (1999) https://doi.org/10.1016/S1388-1981(99)00153-5
  14. Hitchcock, M. J., Farrell, C. A., Huybensz, S., Luh, B. Y, and Phelps, D. J., Affinity purification of renal dipeptidase solubilized with detergent, Anal. Biochem., 163, 219-223 (1987) https://doi.org/10.1016/0003-2697(87)90116-3
  15. Hooper, N. M., Low, M. G., and Turner, A. J., Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C, Biochem. J., 244, 465-469 (1987) https://doi.org/10.1042/bj2440465
  16. Hooper, N. M., and Turner, A. J., Ectoenzymes of the kidney microvillar membrane. Isolation and characterization of the amphipathic form of renal dipeptidase and hydrolysis of its glycosyl-phosphatidylinositol anchor by an activity in plasma, Biochem. J., 261, 811-818 (1989) https://doi.org/10.1042/bj2610811
  17. Ito, Y., Watanabe, Y., Hirano, K., Sugiura, M., Sawaki, S., and Ogiso, T., A fluorometric method for dipeptidase activity measurement in urine, using L-alanyl-L-alanine as substrate, J. Biochem., (Tokyo) 96, 1-8 (1984) https://doi.org/10.1093/oxfordjournals.jbchem.a134801
  18. Iwasaki, Y., Tsubouchi, Y., Ichihashi, A., Nakano, H., Kobayashi, T., Ikezawa, H., and Yamane, T., Two distinct phosphatidylinositol- specific phospholipase Cs from Streptomyces antibioticus, Biochim. Biophys. Acta, 1391, 52-66 (1998) https://doi.org/10.1016/S0005-2760(97)00191-4
  19. Kang, B. Y., We, J. S., Choi, K., Lee, H. B., Han, H. J., and Park, H. S., Release of renal dipeptidase from rabbit renal proximal tubules and its inhibition by gentamicin, Arch. Pharm. Res., 22,367-371 (1999) https://doi.org/10.1007/BF02979059
  20. Kropp, H., Sundelof, J. G., Hajdu, R., and Kahan, F.M., Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase: dehydropeptidase-I, Antimicrob. Agent. Chemother. 22, 62-70 (1982)
  21. Lee, S. H., Kang, B. Y., We, J. S., Park, S. K., and Park, H. S., Differentiation of acute renal failure and chronic renal failure by 2-dimensional analysis of urinary dipeptidase versus serum creatinine, Renal Fail., 21, 169-176 (1999) https://doi.org/10.3109/08860229909066981
  22. Lehto, M. T., and Sharom, F. J., Release of the glycosylphosphatidylinositol- anchored enzyme ecto-5'-nucleotidase by phospholipase C: catalytic activation and modulation by the lipid bilayer, Biochem. J., 332,101-109 (1998) https://doi.org/10.1042/bj3320101
  23. Littlewood, G. M., Hooper, N. M., and Turner, A. J., Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase, Biochem. J., 257, 361-367 (1989) https://doi.org/10.1042/bj2570361
  24. Park, S. W., Choi, K., Kim, I. C., Lee, H. B., Hooper, N. M., and Park, H. S., Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro, Biochem. J., 353, 339-344 (2001) https://doi.org/10.1042/0264-6021:3530339
  25. Park, H. S., Kim, D. H., Kwark, H. S. E., Park, S. K., Kang, S. K., Chung, B. H., and Yoo, G. S., Human renal dipeptidase from kidneys of renal stone patients: Partial purification, Arch. Pharm. Res., 16, 295-299 (1993) https://doi.org/10.1007/BF02977519
  26. Stieger, S., and Brodbeck, U., Glycosyl-phosphatidylinositol anchored acetylcholinesterase as substrate for phosphatidylinositol- specific phospholipase C from Bacillus cereus, Biochimie., 73, 1179-1186 (1991) https://doi.org/10.1016/0300-9084(91)90002-I
  27. We, J. S., Kang, B. Y., Lee, J. C., Lee, H. B., and Park, H. S., Identification of urinary dipeptidase as the released form of renal dipeptidase, Kidney Blood Press. Res., 20, 411-415 (1997) https://doi.org/10.1159/000174264