References
- Asai, A., Nagamura, S., and Saito, H. A Novel Property of Duocar-mycin and Its Analogs for Covalent Reaction with DNA. J. Am. Chem. Soc., 116, 4171-4177 (1994) https://doi.org/10.1021/ja00089a004
- Asai, A., Nagamura, S., Saito, H., Takahashi, I., and Nakano,H. The reversible DNA-alkylating activity of duocarmycin and its analogues. Nucleic Acids Res., 22, 88-93 (1994) https://doi.org/10.1093/nar/22.1.88
- Baird, R. and Winstein, S. Neighboring carbon and hydrogen. LI. Dienones from Ar1q-3 participation. Isolation and behavior of spiro[2,5]octa-1,4-dien-3-one. J. Am. Chem. Soc., 85, 567-578 (1963) https://doi.org/10.1021/ja00888a020
- Barber, A. M. and Zhurkin, V. B. CAP binding sites reveal pyrimidine-purine pattern characteristic of DNA bending. J. Biomol. Struct. Dyn., 8, 213-232 (1990) https://doi.org/10.1080/07391102.1990.10507803
- Boger, D. L., Ishizaki, T, and Zarrinmayeh, H. Isolation and characterization of the duocarmycin-adenine DNA adduct. J. Am. Chem. Soc., 113, 6645-6649 (1991) https://doi.org/10.1021/ja00017a042
- Boger, D. L. and Mesini, P. DNA Alkylation Properties of CC1065 and Duocarmycin Analogs Incorporating the 2,3,10, 10a-Tetrahydrocyclopropa[d]benzo[f]quinol-5-one Alkylation Subunit: Identification of Subtle Structural Features That Contribute to the Regioselectivity of the Adenine N3 Alkylation Reaction. J. Am. Chem. Soc., 117, 11647-11655 (1995) https://doi.org/10.1021/ja00152a004
- Boger, D. L., Han, N., Tarby, C. M., Boyce, C. W., Cai, H., Jin, Q., and Kitos, P. A. Synthesis, Chemical Properties, and Preliminary Evaluation of Substituted CBI Analogs of CC1065 and the Duocarmycins Incorporating the 7-Cyano-1,2, 9,9a-tetra-hydrocyclopropa[c]benz[e]indol-4-0ne Alkylation Subunit: Hammett Quantitation of the Magnitude of Electronic Effects on Functional Reactivity. J. Org. Chem., 61, 4894-4912 (1996) https://doi.org/10.1021/jo9605298
- Boger, D. L. and Garbaccio, R. M., Jin, Q. Synthesis and Evaluation of CC-1065 and Duocarmycin Analogs Incorporating the Iso-CI and Iso-CBI Alkylation Subunits: Impact of Relocation of the C-4 Carbonyl. J. Org. Chem., 62, 8875-8891 (1997) https://doi.org/10.1021/jo971686p
- Boger, D. L. and Turnbull, P. Synthesis and Evaluation of CC1065 and Duocarmycin Analogs Incorporating the 1,2,3,4, 11, 11a-Hexahydrocyclopropa[c]naphtho[2,1-b]azepin-6-one (CNA) Alkylation Subunit: Structural Features that Govern Reactivity and Reaction Regioselectivity. J. Org. Chem., 62, 5849-5863 (1997) https://doi.org/10.1021/jo9707085
- Borgias, B. A., Thomas, P. D., and James, T.L. Complete Relaxation Analysis (CORMA). University of California, San Francisco, (1989)
- Borgias, B. A., Gochin, M., Kerwood, D. J., and James T L. Relaxation matrix analysis of 2D NMR data. Prog. Nucl. Magn. Reson. Spectrosc., 22, 83100 (1990)
- Chuprina, V. P., Lipanov, A. A, Fedoroff, O., Kim, S. G., Kintanar, A., and Reid, B. R. Sequence effects on local DNA topology. Proc. Natl. Acad. Sci. U.S.A., 88, 9087-9091 (1991) https://doi.org/10.1073/pnas.88.20.9087
- Churchill, M. E., Jones, D. N., Glaser, T., Hefner, H., Searles, M. A., and Travers, A. A. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG. EMBO Journal, 14, 1264-1275(1995)
- Colominas, C., Luque, F. J., and Orozco, M. Tautomerism and Protonation of Guanine and Cytosine. Implications in the Formation of Hydrogen-Bonded Complexes. J. Am. Chem. Soc., 118, 6811-6821 (1996) https://doi.org/10.1021/ja954293l
- Colson, A. -O., Besler, B., and Sevilla, M. D. Ab initio molecular orbital calculations on DNA base pair radical ions: effect of base pairing on proton-transfer energies, electron affinities, and ionization potentials. J. Phys. Chem., 96, 9787-9794 (1992) https://doi.org/10.1021/j100203a039
- Han, F. X. and Hurley, L. H. A model for the T-antigen-induced structural alteration of the SV40 replication origin based upon experiments with specific probes for bent, straight, and unwound DNA. Biochemistry, 35, 7993-8001 (1996) https://doi.org/10.1021/bi960251d
- Hanka, L. J., Dietz, A., Gerpheide, S. A., Kuentzel, S. L., and Martin, D. G. CC-1065 (NSC-298223), a new antitumor antibiotic. Production, in vitro biological activity, microbiological assays and taxonomy of the producing microorganism. J. Antibiot., 31, 1211-1217 (1978) https://doi.org/10.7164/antibiotics.31.1211
- Hassan, M. A. and Calladine, C. R. Propeller-twisting of basepairs and the conformational mobility of dinucleotide steps in DNA. J. Mol. Biol., 259, 95-103 (1996) https://doi.org/10.1006/jmbi.1996.0304
- Hassan, M. A. and Calladine, C. R. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol., 282, 331-343 (1998) https://doi.org/10.1006/jmbi.1998.1994
- Hurley, L. H., Reynolds, V. L., Swenson, D. H., Petzold, G. L., and Scahill, T. A. Reaction of the antitumor antibiotic CC1065 with DNA: structure of a DNA adduct with DNA sequence specificity. Science, 226, 843-844 (1984) https://doi.org/10.1126/science.6494915
- Hurley, L. H., Warpehoski, M. A., Lee, C. -S., McGovren, J. P, and Scahill, T. A.; Kelly, K. C., Wicnienski, N. A., Gebhard, I., Bradford, V. S. Sequence specificity of DNA alkylation by the unnatural enantiomer of CC-1065 and its synthetic analogs. J. Am. Chem. Soc., 112 ,4633-4649 (1990) https://doi.org/10.1021/ja00168a003
- Hurley, L. H. and Draves, P. H. In Molecular Aspects of Anticancer DrugDNA Interactions; Vol. 2; Neidle, S., Waring, M. J., Eds.; The Macmillan Press Ltd., London, pp 89133 (1993)
- Hutter, M. and Clark, T. On the Enhanced Stability of the Guanine-Cytosine Base-Pair Radical Cation. J. Am. Chem. Soc., 118, 7574-7577 (1996) https://doi.org/10.1021/ja953370+
- Ichimura, M., Ogawa, T., Katsumata, S., Takahashi, K., Takahashi, I., and Nakano, H. Duocarmycins, new antitumor antibiotics produced by Streptomyces; producing organisms and improved production. J. Antibiot., 44, 1045-1053 (1991) https://doi.org/10.7164/antibiotics.44.1045
- Jencks, W. P. (chapter 3) in Catalysis in Chemistry and Enzymology, Dover, New York, (1987)
- Katahira, M., Sugeta, H., Kyogoku, Y., Fujii, S., Fujisawa, R., and Tomita, K. One- and two-dimensional NMR studies on the conformation of DNA containing the oligo(dA)oligo(dT) tract. Nucleic Acids Res., 16, 8619-8632 (1988) https://doi.org/10.1093/nar/16.17.8619
- Katahira, M., Sugeta, H., and Kyogoku, Y. A new model for the bending of DNAs containing the oligo(dA) tracts based on NMR observations. Nucleic Acids Res., 18, 613-618 (1990) https://doi.org/10.1093/nar/18.3.613
- Kim, S. -G. and Reid, B. R. Solution structure of the TnAn DNA duplex GCCGTIAACGCG containing the Hpal restriction site. Biochemistry, 31, 12103-12116 (1992) https://doi.org/10.1021/bi00163a020
- Kintanar, A., Klevit, R. E., and Reid, B. R. Two-dimensional NMR investigation of a bent DNA fragment: assignment of the proton resonances and preliminary structure analysis. Nucleic Acids Res., 15, 5845-5862 (1987) https://doi.org/10.1093/nar/15.14.5845
- Krueger, W. C., Li, L. H., Moscowitz, A.., Prairie, M. D., Petzold, G., and Swenson, D. H. Binding of CC-1065 to poly- and oligonucleotides. Biopolymers, 24, 1549-1572 (1985) https://doi.org/10.1002/bip.360240811
- Krueger, W. C. and Prairie, M. D. A circular dichroism study of the binding of CC-1065 to B and Z form poly(dl-5BrdC). poly(dl-5BrdC). Chem. -Biol. Interact., 62, 281-295 (1987) https://doi.org/10.1016/0009-2797(87)90028-7
-
Lam, S. L. and Au-Yeung, S. C. SeqJence-specific local structural variations in solution structures of d
$(CGXX`CG)_2$ and d$(CAXX`TG)_2$ self-complementary deoxyribonucleic acids. J. Mol. Biol., 266, 745-60 (1997) https://doi.org/10.1006/jmbi.1996.0783 - Lamm, G. and Pack, G.R. Acidic domains around nucleic acids. Proc. Natl. Acad. Sci. U.S.A., 87, 9033-9036 (1990) https://doi.org/10.1073/pnas.87.22.9033
- Lee, C. S., Sun, D., Kizu, R., and Hurley, L. H. Determination of the structural features of (+)-CC-1065 that are responsible for bending and winding of DNA. Chem. Res. Toxicol., 4, 203-213 (1991) https://doi.org/10.1021/tx00020a013
- Lee, C. -S. and Gibson, N. W. DNA interstrand cross-links induced by the cyclopropylpyrroloindole antitumor agent bizelesin are reversible upon exposure to alkali. Biochemistry, 32, 9108-9114 (1993) https://doi.org/10.1021/bi00086a015
- Lee, S. -J., Park, H. -J., and Hurley, L. H. Unpublished results
- Lin, C. H. and Hurley, L. H. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies. Biochemistry, 29, 9503-9507 (1990) https://doi.org/10.1021/bi00493a002
- Lin, C. H. Use of High-Field NMR in Combination with StableIsotope Labeled Oligomers to Probe the Reaction of (+)-CC-1065 with DNA. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, August (1991)
- Lin, C. H., Beale, J. M., and Hurley, L. H. Structure of 곧 (+)-CC-1065-DNA adduct: critical role of ordered water molecules and implications for involvement of phosphate catalysis in the covalent reaction. Biochemistry, 30, 3597-3602 (1991) https://doi.org/10.1021/bi00229a002
- Lin, C. H. and Sun, D., Hurley, L. H. (+)-CC-1065 produces bending of DNA that appears to resemble adenine/thymine tracts. Chem. Res. Toxicol., 4, 21-26 (1991) https://doi.org/10.1021/tx00019a003
- Lin, C. H., Hill, G. C., and Hurley, L. H. Characterization of a 12mer duplexd(GGCGGAGTTAGG).d(CCTAACTCCGCC) containing a highly reactive (+)-CC-1065 sequence by 1Hand 31P NMR, hydroxyl-radical footprinting, and NOESY restrained molecular dynamics calculations. Chem. Res. Toxicol., 5, 167-182 (1992) https://doi.org/10.1021/tx00026a005
- Lin, C. H. and Patel, D. J. SOlution structure of the covalent duocarmycin A-DNA duplex complex. J. Mol. Biol., 248, 162-179 (1995) https://doi.org/10.1006/jmbi.1995.0209
- Martin, D. G., Biles, C., Gerpheide, S. A., Hanka, L. J., Krueger, W. C., McGovren, J. P., Mizsak, S. A., Neil, G. L., Stewart, J. C., and Visser, J. CC-1065 (NSC 298223), a potent new antitumor agent improved production and isolation, characterization and antitumor activity. J. Antibiot., 34, 1119-1125 (1981) https://doi.org/10.7164/antibiotics.34.1119
- McNamara, P. T., Bolshoy, A., Trifonov, E. N., and Harrington, R. E. Sequence-dependent kinks induced in curved DNA J. Biomol. Struct. Dyn., 8, 529-538 (1990) https://doi.org/10.1080/07391102.1990.10507827
- Mergny, J. -L., Lacroix, L., Han, X., Leroy, J -L., and Helene, C. Intramolecular Folding of Pyrimidine Oligodeoxynucleotides into an i-DNA Motif. J. Am. Chem. Soc., 117, 8887-8898 (1995) https://doi.org/10.1021/ja00140a001
- Mitchell, M. A., Weiland, K. L., Aristoff, P.A., Johnson, P. D., and Dooley, T P. Sequence-selective guanine reactivity by duocarmycin A. Chem. Res. Toxicol., 6, 421-424 (1993) https://doi.org/10.1021/tx00034a005
- Mujeeb, A, Kerwin, S. M., Kenyon, G. L., and James, T L. Solution structure of a conserved DNA sequence from the HIV-1 genome: restrained molecular dynamics simulation with distance and torsion angle restraints derived from two-dimensional NMR spectra. Biochemistry, 32, 13419-13431 (1993) https://doi.org/10.1021/bi00212a007
- Nadeau, J. G. and Crothers, D. M. Structural basis for DNA bending. Proc. Natl. Acad. Sci. U.S.A., 86, 2622-2626 (1989) https://doi.org/10.1073/pnas.86.8.2622
- Nagaich, A. K., Bhattacharyya, D., Brahmachari, S. K., and Bansal, M. CA/TG sequence at the 5' end of oligo(A)-tracts strongly modulates DNA curvature. J. Biol Chem., 269, 7824-7833 (1994)
- Needham-VanDevanter, D. R., Hurley, L. H., Reynolds, V. L., Theriault, N. Y., Krueger, W. C., and Wierenga, W. Characterization of an adduct between CC-1065 and a defined oligodeoxynucleotide duplex. Nucleic Acids Res., 12, 6159-6168 (1984) https://doi.org/10.1093/nar/12.15.6159
- Park, H. -J. and Hurley, L. H. Covalent Modification of N3 of Guanine by (+)-CC-1065 Results in Protonation of the Cross-Strand Cytosine. J. Am. Chem. Soc., 119, 629-630 (1997) https://doi.org/10.1021/ja9632264
- Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., Ferguson, D. M., Seibel, G. L., Singh, C., Weiner, P. K., and Kollman, P. A AMBER 4.1, University of California: San Francisco, (1995)
-
Radhakrishnan, I., Gao, X., Santos, C. d. I., Live, D., and Patel, D. J. NMR structural studies of intramolecular (Y+)
$_n$ (R+)$_n$ (Y-)$_n$ DNA triplexes in solution: imino and amino proton and nitrogen markers of G.TA base triple formation. Biochemistry, 30, 9022-9030 (1991) https://doi.org/10.1021/bi00101a016 - Radhakrishnan, I., Patel, D. J., Priestly, E. S., Nash, H. M., and Dervan, P. B. NMR structural studies on a nonnatural deoxyribonucleoside which mediates recognition of GC base pairs in pyrimidine-purine-pyrimidine DNA triplexes. Biochemistry, 32, 11228-11234 (1993) https://doi.org/10.1021/bi00092a037
- Reynolds, V. L., Molineux, I. J., Kaplan, D. J., Swenson, D. H., and Hurley, L. H. Reaction of the antitumor antibiotic CC1065 with DNA Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. Biochemistry, 24, 6228-6237 (1985) https://doi.org/10.1021/bi00343a029
- Reynolds, V. L., McGovren, J. P, and Hurley, L. H. The chemistry, mechanism of action and biological properties of CC-1065, a potent antitumor antibiotic. J. Antibiot., 39, 319-334 (1986) https://doi.org/10.7164/antibiotics.39.319
- Robinson, H. and Wang, A. H. 5'-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. Natl. Acad. Sci. U.S.A., 90, 5224-5228 (1993) https://doi.org/10.1073/pnas.90.11.5224
- Rohozinski, J., Hancock, J. M., and Keniry, M. A. Polycytosine regions contained in DNA hairpin loops interact via a fourstranded, parallel structure similar to the i-motif. Nucleic Acids Res., 22, 4653-4659 (1994) https://doi.org/10.1093/nar/22.22.4653
- Santos, C. d. I., Rosen, M., and Patel, D. NMR studies of DNA (R+)n.(Y-)n.(Y+)n triple helices in solution: imino and amino proton markers of T.A.T and C.G.C+ base-triple formation. Biochemistry, 28, 7282-7289 (1989). https://doi.org/10.1021/bi00444a021
- Schowen, R. L. (chapter 2), and Maggiora, G. and Christoffersen, R. (chapter 3), in Transition States of Biochemical Processes, eds. Gandour, R. and Schowen, R. L., Plenum, New York, (1978)
- Schultz, S. C., Shields, G. C., and Steitz, T. A. Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science, 253, 1001-1007 (1991) https://doi.org/10.1126/science.1653449
- Sugiyama, H., Ohmori, K., Chan, K. L., Hosoda, M., Asai, A., Saito, H., and Saito, I. A novel guanine N3 alkylation by antitumor antibiotic duocarmycin A. Tetrahedron Lett., 34, 2179-2182 (1993) https://doi.org/10.1016/S0040-4039(00)60376-3
- Sugiyama, H., Lian, C., Isomura, M., Saito, I., and Wang, A. H. Distamycin A modulates the sequence specificity of DNA alkylation by duocarmycin A Proc. Natl Acad. Sci. U.S.A., 93, 14405-14410 (1996) https://doi.org/10.1073/pnas.93.25.14405
- Sun, D., Lin, C. H., and Hurley, L. H. A-tract and (+)-CC-1065 induced bending of DNA. Comparison of structural features using non-denaturing gel analysis, hydroxyl-radical footprinting, and high-field NMR. Biochemistry, 32, 4487-4495 (1993) https://doi.org/10.1021/bi00068a003
- Sun, D., Hurley, L. H. Cooperative bending of the 21-base-pair repeats of the SV40 viral early promoter by human Sp1. Biochemistry, 33, 9578-9587 (1994) https://doi.org/10.1021/bi00198a025
- Takahashi, I., Takahashi, K., Ichimura, M., Morimoto, M., Asano, K., Kawamoto, I., Tomita, F., and Nakano, H. Duocarmycin A, a new antitumor antibiotic from Streptomyces. J. Antibiot., 41, 1915-1917 (1988) https://doi.org/10.7164/antibiotics.41.1915
- Warpehoski, M. A., Gebhard, I., Kelly, R. C., Krueger, W. C., Li, L. H., McGovren, J. P., Prairie, M. D., Wicnienski, N., and Wierenga, W. Stereoelectronic factors influencing the biological activity and DNA interaction of synthetic antitumor agents modeled on CC-1065. J. Med. Chem., 31, 590-603 (1988) https://doi.org/10.1021/jm00398a017
- Warpehoski, M. A. and Hurley, L. H. Sequence selectivity of DNA covalent modification. Chem. Res. Toxicol., 1, 315-333 (1988) https://doi.org/10.1021/tx00006a001
- Warpehoski, M. In Advances in DNA Sequence Specific Agents, Vol. 1; Hurley, L. H., Ed.; JAI Press Inc.: Greenwich, CT, pp 217245 (1992)
- Warpehoski, M. A., Harper, D. E., Mitchell, M. A., and Monroe T. J. Reversibility of the covalent reaction of CC-1065 and analogues with DNA. Biochemistry, 31, 2502-2508 (1992) https://doi.org/10.1021/bi00124a009
- Warpehoski, M. A. and Harper, D. E. Acid-Dependent Electrophilicity of Cydopropylpyrroloindoles. Nature's Masking Strategy for a Potent DNA Alkylator. J. Am. Chem. Soc., 116, 7573-7580 (1994) https://doi.org/10.1021/ja00096a014
- Warpehoski, M. A. and Harper, D. E. Enzyme-like Rate Acceleration in the DNA Minor Groove. Cyclopropylpyrroloindoles as Mechanism-Based Inactivators of DNA. J. Am. Chem. Soc., 117, 2951-2952 (1995) https://doi.org/10.1021/ja00115a040
- Weisz, K., Shafer, R. H., Egan, W., anc James, T. L. Solution structure of the octamer motif in immunoglobulin genes via restrained molecular dynamics calculations. Biochemistry, 33, 354-366 (1994) https://doi.org/10.1021/bi00167a046
- Yamamoto, K., Sugiyama, H., and Kawarishi, S. Concerted DNA recognition and novel site-specific alkylation by duocarmycin A with distamycin A. Biochemistry, 32, 1059-1066 (1993) https://doi.org/10.1021/bi00055a010
- Yuan, Y. -C., Seaman, F. C., Hurley, L. H. Unpublishec results