DOI QR코드

DOI QR Code

Computational Study of Fouling Deposits Due to Surface-Coated Particles in Coal-Fired Power Utility Boilers

표면 코팅 입자에 의한 석탄화력 발전용 보일러 파울링 수치적 연구

  • Published : 2002.03.01

Abstract

Fouling deposits due to surface-coated particles have been calculated using CFD techniques. The sticking probabilities of the surface-coated particles are also evaluated on the basis of an energy balance. The sticking probabilities of the deposit surface are also included in the prediction of the deposition occurring through the multiple impaction of particles with the deposit surface. The sticking probability of an impacting particle is expressed in terms of such parameters as particle viscosity, surface tension, impact velocity, impact angle and the thickness of the sticky layer on a particle. Particulate behavior around a tube in cross flow was studied using the Lagrangian approach. Three important parameters i.e. impact velocity, impact angle, and particulate concentration, were used in the prediction of deposition rate. The computational predictions were found to be in good agreement with the experimental data.

Keywords

References

  1. Sondreal, E. A., Tufte, P. H. and Beckering, W., 1977, 'Ash Fouling in the Combustion of Low Rank Western U. S. Coals,' Combust. Sci. and Tech., Vol. 16. pp. 95-110 https://doi.org/10.1080/00102207708946797
  2. Bryers, R. W., 1996, 'Fire Side Slagging, Fouling, and High-Temperature Corrosion of Heat-Transfer Surface due to lmpurities in Steam-Raising Fuels,' Prog. Energy Cimbust. Sci., Vol. 22, pp. 29-120 https://doi.org/10.1016/0360-1285(95)00012-7
  3. Baxter, L. L. and DeSollar, R. W., 1993, 'A Mechanistic Description of Ash Deposition during Pulverized Coal Combustion: Predictions Compared with Observations,' Fuel, Vol. 72, pp. 1411-1418 https://doi.org/10.1016/0016-2361(93)90417-Z
  4. Loehden, D., 1988, 'The Formation of Fouling and Slagging Deposits in Pulverized Coal Combustion,' ME Thesis, MIT
  5. Fan, J., Zhou, D., Jin, J. and Cen, K., 1991, 'Numerical Simulation of Tube Erosion by Particle Impaction,' Wear, Vol. 142, pp. 171-184 https://doi.org/10.1016/0043-1648(91)90159-R
  6. Schuh, M. J., Schuler, C. A. and Humphrey, J. A. C., 1989, 'Numerical Calculation of Particle-Laden Gas Flows Past Tubes,' AIChE J., Vol. 35, No. 3, pp. 466-480 https://doi.org/10.1002/aic.690350315
  7. Schweitzer, M. O. and Humphrey, J. A. C., 1988, 'Note on Experimental Measurement of Particles Embedded in One and Two In-line Tubes in a High Speed Gas Stream,' Wear, Vol. 126, pp. 211-218 https://doi.org/10.1016/0043-1648(88)90139-1
  8. Neville, M. and Sarofim, A. E, 1985, 'The Fate of Sodium during Pulverized Coal Combustion,' Fuel, Vol. 64, pp. 384-390 https://doi.org/10.1016/0016-2361(85)90429-6
  9. Erickson, T. A., Ludlow, D. K. and Benson, S. A., 1991, 'Interaction of Sodium, Sulfur, and Silica during Coal Combustion,' Energy & Fuels. Vol. 5, pp. 539-547 https://doi.org/10.1021/ef00028a003
  10. Quann, R. J., Neville, M., Janghorbanl, M., Mims, C. A. and Sarofim, A. F., 1982, 'Mineral Matter and Trace Element Vaporization in a Laboratory-Pulverized Coal Combustion System,' Environ. Sci. Technol., Vol. 16, pp. 776-781 https://doi.org/10.1021/es00105a009
  11. Raask, E. and Goetz, L., 1981, 'Characteristics of Captured Ash, Chimney Solids and Trace Elements,' J. Inst. Energy, pp. 163-173
  12. Mims, C. A., Neville, M., Quann, R. J., House, K. and Sarofim, A. F., 1980, 'Laboratory Studies of Mineral Matter Vaporization during Coal Combustion,' AIChE Symp. Series, Vol. 76, pp. 188-194
  13. Walsh, P. M., Sarofim, A. F. and Beer, J. M., 1992, 'Fouling of Convection Heat Exchangers by Llignitic Coal Ash,' Energy & Fuels, Vol. 6, pp. 709-715 https://doi.org/10.1021/ef00036a004
  14. Tabakoff, W., and Malak, M. F., 1987, 'Laser Measurements of Fly Ash Rebound Parameters for Use in Trajectory Calculations,' J. Turbomachinery, Vol. 109, pp. 535-540 https://doi.org/10.1115/1.3262144
  15. Lee, B. E., 1997, 'Computational Prediction of Deposition and Erosion in Boiler Tube Banks,' PhD Thesis, The University of New South Wales
  16. Tassopoulos, M., O'Brien, J. A. and Rosner, D. E., 1989, 'Simulation of Microstructure / Mechanism Relationships in Particle Deposition,' AIChE J., Vol. 35, No. 6, pp. 967-980 https://doi.org/10.1002/aic.690350610
  17. Matsumoto, S. and Saito, S., 1970, 'On the Mechanism of Suspension of Particles in Horizontal Pneumatic Conveying: Monte Carlo Simulation Based on the Irregular Bounding Model,' J. Chem. Eng. Japan, Vol. 3, No. 1, pp. 83-92 https://doi.org/10.1252/jcej.3.83
  18. Sommerfeld, M., 1992, 'Modelling of Particle-Wall Collisions in Confined Gas-Particle Flows,' Int. J. Multiphase Flow, Vol. 18, pp. 905-926 https://doi.org/10.1016/0301-9322(92)90067-Q
  19. Osborn, G. A., 1992, 'Review of Sulphur and Chlorine Retention in Coal-Fired Boiler Deposits,' Fuel, Vol. 71, pp. 131-142 https://doi.org/10.1016/0016-2361(92)90001-5
  20. Rosner, D. E., Gokoglu, S. A. and Israel, R., 1982, 'Rational Engineering Correlations of Diffusional and Inertial Particle Deposition Behavior in Non-Isothermal Forced Convection Environments,' Proc. Engineering Foundation Conference: Pennsylvania, pp. 235-256
  21. Israel, R. and Rosner, D. E., 1983, 'Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compressible Gas Flow,' Aerosol Sci. Tech., Vol. 2, pp. 45-51 https://doi.org/10.1080/02786828308958612
  22. Ilias, S. and Douglas, P. L., 1989, 'Inertial Impaction of Aerosol Particles on Cylinders at Intermediate and High Reynolds Numbers,' Chemical Engineering Science, Vol. 44, No. 1, pp. 81-99 https://doi.org/10.1016/0009-2509(89)85235-2
  23. Walsh, P. M., Sayre, A. N., Loehden, D.O., Monroe, L. S., Beer, J. M. and Sarofim, A. F., 'Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposition Growth,' Prog. Energy Combust. Sci., Vol. 16, pp. 327-346 https://doi.org/10.1016/0360-1285(90)90042-2
  24. Jackson, P. J., 1978, 'Deposition of Inorganic Material in Oil-Fired Boilers,' Ash Deposits and Corrosion due to Impurities in Combustion Gases, Hemisphere Pub. Co., pp. 147-161
  25. Borio, R. W., Plumley, A. L. and Sylvester, W. R., 1977, 'Control of High-Temperature Metal Wastage in Pulverized Coal-Fired Steam Generators,' Combustion Engineering Publ. TIS-5055
  26. Borio, R. W., Goetz, G. J. and Levasseur, A. A., 1977, 'Slagging and Fouling Properties of Coal Ash Deposits as Determined in a Laboratory Test Facility,' ASME Paper No. 77-WA/Fu-6
  27. Sondreal, E. A., Gronhovd, G. H., Tufte, P. H. and Beckering, W., 1978, 'Ash Fouling Studies of Low-Rank Western U.S. Coals,' Ash Deposits and Corrosion due to Impurities in Combustion Gases, Hemisphere Pub. Co., pp. 85-111
  28. Tufte, P. H. and Beckering, W., 1975, 'A Proposed Mechanism for Ash Fouling Burning Northern Great Plains Lignite,' ASME Paper No. 74-WA/CD-3