Wear Mechanism of CrN Coating on Aluminum Alloys Deposited by AIP Method

  • Kim, Seock-Sam (School of Mechanical Engineering, Kyungpook National University) ;
  • Suh, Chang-Min (School of Mechanical Engineering, Kyungpook National University) ;
  • Murakami, Ri-ichi (Department of Mechanical Engineering, Tokushima University)
  • 발행 : 2002.06.01

초록

Dry sliding wear and friction test of CrN coaling on two types of aluminum alloy substrates,6061 Al and 7075 Al deposited by arc ion plating, was peformed with a ball-on-disk tribometer. The effects of normal Bead and the mechanical properties of substrate on the friction coefficient and wear-resistance of CrN coating were investigated. The worn surfaces were observed by SEM. The results show that surface micro-hardness of CrN- coated 7075 Al is higher than that of CrN-coated 6061 Al. With an increase in normal lead, wear volume increases, while the friction coefficient decreases. The friction coefficient of CrN-coated 6061 Al is higher than that of CrN-coated 7075 Al, while the wear-resistance of CrN-coated 6061 Al is lower than the CrN-coated 7075 Al's, which indicates that the substrate mechanical properties have strong inf1uences on the friction coefficient and wear of CrN coating. The main wear mechanism was fragments of CrN coating, which were caused by apparent plastic deformation of substrate during wear test.

키워드

참고문헌

  1. Y. Fu, A. W. Batchelor, Surf. Coat. Technol. 102, pp. 119, 1998 https://doi.org/10.1016/S0257-8972(97)00572-0
  2. X. B. Zhou, J. Th. M. De Hosson, Scr. Metall. Mater. 28, p.219, 1993 https://doi.org/10.1016/0956-716X(93)90566-B
  3. F. Ashrafizadeh, High Performance Ceramic Films and Coatings (Edited by P. Vincenzimi), Elsevier Science Publishers, B. V, pp. 613-623, 1991
  4. E.Lugscheider, G.Kramer, C.Barimani, H.Zimmermann, Surf. Coat. Technol. 74-75, pp. 497-502, 1995 https://doi.org/10.1016/0257-8972(95)08305-7
  5. L. R. Katipelli, A. Agarwal, N. B. Dahotre, Applied Surf. Sci. 153, pp. 65-78, 2000 https://doi.org/10.1016/S0169-4332(99)00368-2
  6. L. R. Katipelli, A. Agarwal, N. B. Dahotre, Applied Surf. Sci. 153, pp. 65-78, 2000 https://doi.org/10.1016/S0169-4332(99)00368-2
  7. S. K, Kim, T. H. Kim, J. Whole, K. T. Rie, Surf. Coat. Technol. 131, pp. 121-126, 2000 https://doi.org/10.1016/S0257-8972(00)00831-8
  8. E. Bergman, H. Kaufmann, R. Schmid and J. Vogel, Surf. Coat. Technol. 42, p. 237, 1990 https://doi.org/10.1016/0257-8972(90)90156-7
  9. M. G. Fleming and M. S. J. Hashmi, J. Mater Process. Technol. 32, p. 481, 1992 https://doi.org/10.1016/0924-0136(92)90204-6
  10. O. Knotek, F. LofHer and H. J. Scholl, Surf. Coat Technol 45, p. 53, 1991 https://doi.org/10.1016/0257-8972(91)90205-B
  11. A. Wilson, A. Matthws, J. Housden. R. Turner and B Garside, Surf. Coat. Technol. 62, p. 600, 1993 https://doi.org/10.1016/0257-8972(93)90306-9
  12. H. Hollek, J. Vac. Sci. Technol. A4(6), p. 2661, 1986
  13. W. H. Zhang, J. H. Hsieh, Surf. Coat. Technol. 130, pp. 240-247, 2000 https://doi.org/10.1016/S0257-8972(00)00709-X
  14. F. Zhou, C. M. Suh, S. S. Kim, Tribology Letter (submitted to)
  15. U. Wiklund, O. Wanstrand, M. Larsson, S. Hogmark, Wear 236, pp. 88-95, 1999 https://doi.org/10.1016/S0043-1648(99)00265-3
  16. D. S. Rickerby and P. J. Burnett, Thin Solid Films 157, p.195, 1998 https://doi.org/10.1016/0040-6090(88)90004-1
  17. J. Jiang, R. D. Arnell, J. Tong, Tribology Int. 30(8), pp. 613 https://doi.org/10.1016/S0301-679X(97)00035-2
  18. S. Ramalingam and L. Zheng, Tribology Int. 28(3), pp. 145-161, 1995 https://doi.org/10.1016/0301-679X(95)98963-E
  19. Y. Wang, Y. Jin and S. Wen, Wear 28, p. 265, 1988
  20. J. Zhang, A. T. Alpas, Acta Mater. 45(2), pp. 513-528, 1997 https://doi.org/10.1016/S1359-6454(96)00191-7