References
- Amestoy, P. R., T. A. Davis, I. S. Duff, 'An approximate minimum degree ordering algorithm,' SIAM Journal on Matrix Analysis and Applications 17, 4 (1996), 886-905 https://doi.org/10.1137/S0895479894278952
- Duff, I. S., J. K. Reid, 'The multifrontal solution of indefinite sparse symmetric linear equations,' ACM Transactions on Mathematical Software, 9 (1983), 235-302 https://doi.org/10.1145/356044.356047
- Duff, I. S., A M. Erisman and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press, 1986
- Garey, M. R., D. S. Johnson, 'Computers and intractability,' Bell Telephone Laboratories, Inc., 1979
- Gay, D. M., 'Electronic mail distribution for linear programming test problems,' Mathematical Programming Society COAL Newsletter, 1985
- George, A., J. W. H. Liu, 'A fast implementation of the minimum degree algorithm using quotient graphs,' ACM Transactions on Mathematical Software 6, 3 (1980), 337-358 https://doi.org/10.1145/355900.355906
- George, A., J. W. H. Liu, Computer solution of large sparse positive definite systems, Prentice-Hall, 1981
- George, A., J. W. H. Liu, 'The evolution of the minimum degree ordering algorithm,' SIAM Review 31, 1 (1989), 1-19 https://doi.org/10.1137/1031001
- Hendrickson, B., E. Rothberg, 'Improving the run time and quality of nested dissection ordering,' SIAM Journal on Scientific Computing 20,2 (1998) 468-489 https://doi.org/10.1137/S1064827596300656
- Jung, H. W., R. E. Marsten and M. J. Saltzman, 'Numerical factorization methods for interior point algorithms,' ORSA Journal on Computing 6, 1 (1994), 94-104 https://doi.org/10.1287/ijoc.6.1.94
- Kim, B. G., M. Seong, S. Park, 'An efficient ordering method and data structure of the interior point method,' Journal of the Korean Opertations Research and Management Science Society 21,3 (1996), 63-74
- Liu, J.W.H., 'Modification of the minimum degree algorithm by multiple elimination,' ACM Trans. Math. Software 11 (1985), 141-153 https://doi.org/10.1145/214392.214398
- Mo, J., S. Park, 'Data structures and the performance improvement of the minimum degree ordering method,' Korea Management Science Review 12, 2 (1995), 31-42
- Rose, D. J., 'A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations,' in Graph Theory and Computing, R. C. Read, ed., Academic Press, 183-217, 1972
- Seol, T.-R., C.-K. Park, S. Park, 'Minimum deficiency ordering with the clique storage structure,' Journal of the Korean Institute of Industrial Engineers 24, 3 (1998), 407-416
- Speelpenning, B., 'The generalized element method,' Tech. Rep. UIUCDCS-R-78-946, Dept. of Computer Science, Univ, of Illinois at Urbana, Champaign, IL, 1978
- Tinney, W. F., J. W. Walker, 'Direct solutions of sparse network equations by optimally ordered triangular factorization,' Proceedings of the IEEE 55 (1967), 1801-1809 https://doi.org/10.1109/PROC.1967.6011
- Yannakakis, M., 'Computing the minimum fill-in is NP-complete,' SIAM J. Algebraic and Discrete Methods 2 (1981), 77-79 https://doi.org/10.1137/0602010