참고문헌
- FEMS Microbiol. Rev. v.103 Studies on copolyester synthesis by Rhodococcus ruber and factors influncing the molecular mass of polyhydroxybutyrate accumulated by Methylobacterium extroquens and Alcaligenes eutophus Anderson, A.J.;D.R. Williams;B. Taidi;E.A. Dawes;D.F. Ewing https://doi.org/10.1111/j.1574-6968.1992.tb05826.x
- Int. J. Biol. Macromol. v.11 Ability of the phototrophic bacterium Rhodospirllum rubrum to produce various poly(3-hydroxyalkanoates);Potential sources for biodegradable polyesters Brandl, H.;E.J. Knee Jr;R.C. Fuller https://doi.org/10.1016/0141-8130(89)90040-8
- J. Biotechnol. v.65 Polyhydroxy-alkanoates, biopolyesters from renewable resources: Physiological and engineering aspects Braunegg, G.;G. Lefebvre;K.F. Genser https://doi.org/10.1016/S0168-1656(98)00126-6
- J. Microbiol. v.39 Effect of levulinic acid on the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha KHB-8862 Chung, S.H.;G.G. Choi;H.W. Kim;Y.H. Rhee
- J. Ferment. Bioeng. v.86 Effect of oligosaccharides on glucose consumption by Rhodobacter sphaeroides in polyhydroxyal-kanoate production from enzymatically treated crude sago starch Hassan, M.A.;Y. Shirai;A. Kubota;M.I.A. Karim;K. Nakanishi;K. Hashimoto https://doi.org/10.1016/S0922-338X(98)80034-2
- Appl. Environ. Microbiol. v.56 Accumulation of a polyhydroxyalkanoate containing primarily 3-hydroxydecanoate from simple carbohydrate substrates by Pseudomonas sp. strain NCIMB 40135 Haywood, G.W.;A.J. Anderson;D.F. Ewing;E.A. Dawes
- Biosci. Biotech. Biochem. v.61 New physiological effects of 5-aminolevulinic acid in plants: The increase of photosynthesis chlorophyll content and plant growth Hotta, Y.;T. Yanaka;H. Takoka;Y. Takeuchi;M. Konnai https://doi.org/10.1271/bbb.61.2025
- Int. J. Biol. Macromol. v.28 Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Psudomonas putida Kim, D.Y.;Y.B. Kim;Y.H. Rhee https://doi.org/10.1016/S0141-8130(00)00150-1
- Photochem. Photobiol. v.64 Prodrugs of 5-aminolevulinic acid for photodynamic therapy Kloek, J.;G.M.J.B. van Henegouwen https://doi.org/10.1111/j.1751-1097.1996.tb01868.x
- J. Microbiol. v.33 Biosynthesis of poly-β-hydroxyalkanoates by Bacillus thuringiensis R-510 Lee, K.T.;J.Y. Kim;Y.H. Rhee;K.S. Bae;Y.B. Kim
- Arch. Microbiol. v.155 Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria Liebergesell, M.;E. Hustede;A. Timm;A. Steinbuchel;R.C. Fuller;R.W. Lenz;H.G. Schlegel https://doi.org/10.1007/BF00244955
- Microbiol. Mol. Biol. Rev. v.63 Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic Madison, L.L.;G.W. Huisman
- J. Biol. Chem. v.219 The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine Mauzerall, D.;S. Granick
- FEMS Microbiol. Rev. v.103 Factors affecting poly-hydroxybutyrate accumulation in cyanobacteria and in purple non-sulfur bacteria Philippis, R.D.;A. Elba;M. Guastini;C. Sili;M. Vincenzini
- Enzyme Microb. Technol. v.6 Photodynamic herbicides: 1. Concept and phenomenology Rebeiz, C.A.;A. Montazar-Zouhoor;H.J. Hopen;S.M. Wu https://doi.org/10.1016/0141-0229(84)90012-7
- Biothechnol. Lett. v.19 Inhibition of 5-aminolevulinic acid (ALA) dehydratase by undissociated levulinic acid during ALA extracellular formation by Rhodobacter sphaeroides Sasaki, K.;M. Wasanori;N. Nishio https://doi.org/10.1023/A:1018331824331
- J. Ferment. Technol. v.65 Production of 5-aminolevulinic acid by photosynthetic bacteria Sasaki, K.;S. Ikeda;Y. Nishizawa;M. Hayashi https://doi.org/10.1016/0385-6380(87)90109-9
- Appl. Microbiol. Biotechnol. v.32 Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor Sasaki, K.;T. Tanaka;Y. Nishizawa;M. Hayashi https://doi.org/10.1007/BF00164749
- Biotechnol. Prog. v.10 5-aminolevulinic acid: A potential herbicide/insecticide from microorganisms Sasikala, C.;Ch.V.Ramana;P.R. Rao https://doi.org/10.1021/bp00029a001
- Process Biochemistry v.34 Effect of phosphate suply and aeration on poly-β-hydroxybutyrate production in Azotobacter chroococcum Savenkova, L.;Z. Gercberga;Z. Kizhlo;E. Stegantseva https://doi.org/10.1016/S0032-9592(98)00070-3
- Seibutsu-kogaku v.73 Inhibitory effect of propionic acid on the 5-aminolevulinic acid (ALA) dehydratase from Rhodobacter sphaeroides and ALA excretion Tanaka, T.;K. Watanabe;S. Nishikawa;K. Sasaki;N. Nishio;S. Nagai
- Appl. Environ. Microbiol. v.62 5-aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene Van der Werf, M.J.;G. Zeikus
- Biotechnol. Lett. v.19 H₂and polyhydroxybutyrate, two alternative chemicals from purple non sulfur bacteria Vincenzini, M.;A. Marchini;A. Ena;R.D. Philippis https://doi.org/10.1023/A:1018336209252
- Appl. Microbiol. Biotechnol. v.40 Production of a co-polyester of 3-hydroxybutyric acid and 3-hydroxyvaleric acid from succinic acid by Rhodococcus ruber biosynthetic considerations Williams, D.R.;A.J. Anderson;E.A. Dawes;D.F. Ewing https://doi.org/10.1007/BF00173334
- J. Ferment. Bioeng. v.80 Effects of amino acid addition on molar fraction of 3-hydroxyvalerate in copolyester of 3-hydroxybutyrate and 3-hydroxyvalerate synthesized by Alcaligenes sp. SH-69 Yoon, J.S.;J.Y. Kim;Y.H. Rhee https://doi.org/10.1016/0922-338X(95)94203-4
- Microorganisms and Industry v.22 Effects of amino acid on the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Alcaligengs sp. K-912 Yoon, J.S.;K.Y. Yun;J.Y. Kim;Y.H. Rhee