Abstract
$LiCoO_{2}$ powders were synthesized at various temperatures using lithium hydroxide and cobalt hydroxide as precursors prepared by precipitation process and freeze-drying. In this study, the$LiCoO_{2}$ samples were synthesized via a solid state reaction with various LiOH concentration between 10 % and 30 % excess. And $LiCoO_{2}$powders were calcined at 600~$800^{\circ}C$ in a short time. Measurements of XRD and SEM were performed to characterize the properties of the prepared materials. The effect of amount of Li ions on the structural change in powder has been examined using the XRD analysis. For the not added excess of LiOH, CoOOH phase presented in the XRD pattern of $LiCoO_{2}$ due to loss of Li ions during firing. The morphology and particle size of the powders were examined using SEM. The obtained powders are high temperature-$LiCoO_{2}$HT-LiCoO$_{2}$) and homogeneous with the range of grain size in the order of hundreds of nanometers. The effects of variation of LiOH concentration on the structural change in powder were investigated using the Rietveld analysis. As an analysis result, c/a is constant by 4.99 on all occasions. Finally, the structure of HT-$LiCoO_{2}$ was simulated by the commercial software $Creius^{2}$(Molecular Simulations, Inc.) from the results of Rietveld analysis.