References
- The American Statistician v.45 Equivariant, Monotonic, 50% Breakdown Estimators Basset, Jr. G. W. https://doi.org/10.2307/2684377
- Journal of the American Statistical Association v.88 Procedures for the Identification of Multiple Outliers in Linear Models Hadi, A. S.;Simonoff, J. S. https://doi.org/10.2307/2291266
- Commun. Statist.-Theory Meth. v.19 A Monte Carlo Comparison of Five Procedures for Identifying Outliers in Linear Regression Kianifard, F.;Swallow, W. H. https://doi.org/10.1080/03610929008830300
-
The Korean Communications in Statistics
v.3
$L_{\infty}$ -estimation based Algorithm for the Least Median of Squares Estimator Kim, B. Y. - Journal of Natural Sciences v.8 Improvements in Computational Efficiency and Accuracy of an Algorithm for the Identification of Regression Outliers Kim, B. Y.;Kim, S. B.
- Technometrics v.27 A Multistage Procedure for Detecting Several Outliers in Linear Regression Marasinghe, M. G. https://doi.org/10.2307/1270206
- Journal of the American Statistical Association v.79 Least Median of Squares Regression Rousseeuw, P. J. https://doi.org/10.2307/2288718
- Robust Regression nad Outlier Detection Rousseeuw, P. J.;Leroy, A. M.
- Journal of the American Statistical Association v.85 Unmasking Multivariate Outliers and Leverage Points Rousseeuw, P. J.;Zomeren, B. C. https://doi.org/10.2307/2289995
- Technometrics v.15 Testing for a Single Outlier in Simple Linear Regression Tietjen, G. L.;Moore, R. H.;Beckman, R. J. https://doi.org/10.2307/1267383
- Computational Statistics and Data Analysis v.36 A Comparative Analysis of Multiple Outlier Detection Procedures in the Linear Regression Model Wisnowski, J. W.;Montgomery, D. C.;Simpson, J. R. https://doi.org/10.1016/S0167-9473(00)00042-6
Cited by
- A Criterion for the Selection of Principal Components in the Robust Principal Component Regression vol.18, pp.6, 2011, https://doi.org/10.5351/CKSS.2011.18.6.761