Abstract
The concept of pivot has been widely used in various classical inferences. In this paper, it is proved by use of pivotal quantities that the Bayesian inferences can be arrived at the same results of classical inferences for the location-scale parameters models under the assumption of non-informative prior distributions. Some theorems are proposed in which the posterior distribution and the sampling distribution of a pivotal quantity coincide. The theorems are applied illustratively to some statistical models.