References
- Handbook of Satistics Logistic Discrimmination. In Classification, Pattern Recognition and Reduction of Dimensionality Anderson, J. A.;P. R. Krishnaiah(ed.);L.n. Kanal(ed.)
- Convergence Diagnosis and Output Analysis Software for Gibbs Sampling Output, Version 0.3 Best, N. G.;Cowles, M. K.;Vines, S. K.
- Complex System v.5 Bayesian back-propagation Buntine, W.;Weigend, A.
- The American Statistician v.49 Understanding the Metropolis-Hastings Algorithm Chib, S.;Greenberg, E. https://doi.org/10.2307/2684568
- Journal of Korean Statistical Society v.28 Bayesian outlier detection in regression model Chung, Y.;Kim, H.
- Journal of the American Statistical Association v.85 Sampling-Based Approaches to Calculating Marginal Densities Gelfand, A.E.;Smith, A. F. M. https://doi.org/10.2307/2289776
- Journal of the American Statistical Association v.88 Variable Selection Via Gibbs Sampling George, E. I.;McCulloch, R. E. https://doi.org/10.2307/2290777
- In Bayesian Statistics v.4 Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments Geweke, J.;J. M. Bernado(ed.);J. O. Berger(ed.);A. P. Dawid(ed.);A. F. M. Smith(ed.)
- Ph.D thesis, California Institute of Technology Bayesian Methods for Adaptive Methods Mackay, D. J. C.
- Bulletin of Mathematical Biophysics v.5 A Logical Calculus of the Ideas Immanent in Nervous Activity McCulloch, W. S.;Pitts, W. https://doi.org/10.1007/BF02478259
- Journal of Chemical Physics v.21 Equation of state calculations by fast computing machines Metropolis, N.;Rosenbluth, A.;Rosenbluth, M.;Teller, A.;Teller, E. https://doi.org/10.1063/1.1699114
- Practical Nonparametric and Semiparametric Bayesian Statistics Feedforward Neural Networks for Nonparametric Regression Muller, P.;Rios Insua. D.;D. Dey(eds.);P. Muller(eds.);D. Sinha(eds.)
- Neural Computation v.10 Issues in Bayesian Analysis of Neural Network Models Muller, P.;Rios Insua, D.
- Bayesian Learning gor Neural Networks Neal, R. M.
- IEEE Trans. Neural Networks v.2 A general Regression Neural Network Specht, D. F. https://doi.org/10.1109/72.97934
- Journal of the American Statistical Association v.82 The Calculation of Posterior Distributions by Data Augmentation Tanner, M. A.;Wong, W. H. https://doi.org/10.2307/2289457
Cited by
- Input Variable Importance in Supervised Learning Models vol.10, pp.1, 2003, https://doi.org/10.5351/CKSS.2003.10.1.239