DOI QR코드

DOI QR Code

MR 유체 댐퍼의 동적모델을 고려한 사장교의 반(半)능동제어

Semi-active Control of a Seismically Excited Cable-Stared Bridge Considering Dynamic Models of MR Fluid Damper

  • 정형조 (한국과학기술원 토목공학과, 연구조교수) ;
  • 박규식 (한국과학기술원 토목공학과) ;
  • ;
  • 이인원 (한국과학기술원 토목공학과)
  • 발행 : 2002.04.01

초록

본 논문에서는 미국토목학회(ASCE)의 사장교에 대한 첫번째 벤치마크 문제를 이용하여 제어-구조물 상호작용을 고려한 새로운 반능동제어 기법을 제안하였다. 이 벤치마크 문제에서는 2003년 완공 예정으로 미국 Missouri주에 건설 중인 Cape Girardeau 교를 대상 구조물로 고려하였다. Cape Girardeau 교는 New Madrid 지진구역에 위치하고, Mississippi 강을 횡단하는 주요 교량이라는 점 때문에 설계단계에서부터 내진 문제를 중요하게 고려하였다. 본 연구에서는 MR 유체 감쇠기를 제어 장치로 제안하였고, clipped-optimal 알고리듬을 제어 알고리듬으로 사용하였다. 또한, 대용량 MR 유체 감쇠기 실험 결과를 이용하여, Bingham 모델, Bouc-Wen 모델, 수정된 Bouc-HWen 모델과 같이 수치해석에 이용할 수 있는 다양한 동적 모델을 개발하였다. MR 유체 감쇠기는 제어가능한 에너지 소산장치이며 구조물에 에너지를 가하지 않기 때문에 제안된 제어기법은 한정입출력 안정성이 보장된다. 수치해석을 통해, MR 유체 감쇠기를 이용한 반능동제어 기법이 사장교의 응답 감소에 효과적인 방법임을 증명하였다.

This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control-structure interaction. This benchmark problem focuses on a cable-stayed bridge in Cope Girardeau, Missouri, USA, for which construction is expected to be completed in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi River. In this paper, magnetorheological(MR) fluid dampers are proposed as the supplemental damping devices, and a clipped-optimal control algorithm is employed. Several types of dynamic models for MR fluid dampers, such as a Bingham model, a Bouc-Wen model, and a modified Bouc-Wen model, are considered, which are obtained from data based on experimental results for full-scale dampers. Because the MR fluid damper is a controllable energy-dissipation device that cannot add mechanical energy to the structural system, the proposed control strategy is fail-safe in that bounded-input, bounded-output stability of the controlled structure is guaranteed. Numerical simulation results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.

키워드

참고문헌

  1. Dyke, S. J., Turan, G., Caicedo, J. M., Bergman, L. A., and Hague, S., “Benchmark control problem for seismic response of cable-stayed bridges,” http://wusceel.cive.wustl.edu/quake/, 2000.
  2. Dyke, S. J., Spencer, Jr., B. F., Sain, M. K., and Carlson, J. D., “Modeling and control of magnetorheological dampers for seismic response,” Smart Materials and Structures, Vol. 5, 1996, pp. 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  3. Jansen, L. M. and Dyke, S. J., “Semiactive control strategies for MR dampers: comparative study,” Journal of Engineering Mechanics, ASCE, Vol. 126, No. 8, 2000, pp. 795-803. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
  4. Spencer, Jr., B. F., Johnson, E. A., and Ramallo, J. C., “'Smart' isolation for seismic control,” JSME International Journal, Vol. 43, No. 3, 2000, pp. 704-711. https://doi.org/10.1299/jsmec.43.704
  5. Yoshioka, H., Ramallo, J., and Spencer, Jr., B. F., “'Smart' base isolation strategies employing magnetorheological dampers,” Journal of Engineering Mechanics, ASCE, 2001 (accepted).
  6. Jung, H. J., Spencer, Jr., B. F., and Lee, I. W., “Benchmark control problem for seismically excited cable-stayed bridges using smart damping strategies,” IABSE Conference on Cable-Supported Bridges, Seoul, Korea, Serial 84, 2001, pp. 256-257.
  7. Koh, H. M., Park, W., Park, K. S., Ok, S. Y., and Hahm, D., “Performance evaluation and cost effectiveness of semi-active vibration control system for cable-stayed bridges under earthquake excitation,” IABSE Conference on Cable-Supported Bridges, Seoul, Korea, 2001, pp. 258-259.
  8. Moon, S. J., Bergman, L. A., and Voulgaris, P. G., “Application of magnetorheological dampers to control of a cable-stayed bridge subjected to seismic excitation,” Journal of Structural Engineering, ASCE, 2001(submitted).
  9. Stanway, R., Sproston, J. L., and Stevens, N. G., “Nonlinear modeling of an electro-rheological vibration damper,” Journal of Electrostatics, Vol. 20, 1987, pp. 167-184. https://doi.org/10.1016/0304-3886(87)90056-8
  10. Spencer, Jr., B. F., Dyke, S. J., Sain, M. K., and Carlson, J. D., “Phenomenological model of a magnetorheological damper,” Journal of Engineering Mechanics, ASCE, Vol. 123, No. 3, 1997, pp. 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  11. Wen, Y. K., “Method of random vibration of hysteretic systems,” Journal of Engineering Mechanics Division, ASCE, Vol. 102, EM2, 1976, pp. 249-263.
  12. Dyke, S. J., Spencer, Jr., B. F., Sain, M. K., and Carlson, J. D., “An experimental study of MR dampers for seismic protection,” Smart Materials and Stuctures: Special Issue on Large Civil Structures, 1997.
  13. Yang, G., Spencer, Jr., B. F., Carlson, J. D., and Sain, M. K., “Large-scale MR fluid dampers : Modeling, and dynamic performance considerations,” Engineering Structures, Vol. 30, No. 3, 2002, pp. 309-323.
  14. Laub, A. J., Health, M. T., Paige, C. C., and Ward, R. C., “Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms,” IEEE Transaction on Automatic Control, AC-32, 1987, pp. 17-32.
  15. Spencer, Jr., B. F., Suhardjo, J., and Sain, M. K., “Frequency domain optimal control strategies for aseismic protection,” Journal of Engineering Mechanics, ASCE, Vol. 120, No. 1, 1994, pp. 135-159. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(135)