Abstract
In this paper, we implement a new vocabulary-independent speech recognition system that uses CV, VCCV, VC recognition unit. Since these recognition units are extracted in the trowel region of syllable, the segmentation is easy and robust. And in the case of not existing VCCV unit, the units are replaced by combining VC and CV semi-syllable model. Clustering of vowel group and applying combination rule to the substitution model in the case of not existing of VCCV model lead to 5.2% recognition performance improvement from 90.4% (Model A) to 95.6% (Model C) in the first candidate. The recognition results that is 98.8% recognition rate in the second candidate confirm the effectiveness of the proposed method.
본 논문에서는 CV (Consonant Vowel), VCCV (Vowel Consonant Consonant Vowel), VC (Vowel Consonant) 인식 단위를 이용한 새로운 어휘 독립 음성인식 시스템을 구현하였다. 이 인식 단위는 음절의 안정된 모음 구간에서 분할하여 구성했기 때문에 분할이 용이하다. VCCV단위가 존재하지 않을 경우에는 VC와 CV 반음절 모델을 결합하여 대체모델을 구성하였다. 모음군 군집화 (clustering)와 VCCV 모델이 존재하지 않을 경우 대체모델에 결합규칙을 적용하여 제 1후보에서 90.4% (모델 A)에서 95.6% (모델 C)로 5.2%의 인식 성능향상을 가져왔다. 인식실험결과 제 2후보에서 98.8%의 인식률로 제안된 방법이 효율적임을 확인하였다.