Biological Treatment of Dyeing Wastewater Using Jet Loop Reactor with Activated Carton Supports

활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리

  • 조무환 (영남대학교 응용화학공학부) ;
  • 박종탁 (대구보건대학 소방안전관리과) ;
  • 이길호 (영남대학교 응용화학공학부) ;
  • 류원률 (영남대학교 응용화학공학부)
  • Published : 2002.06.01

Abstract

Today, many problems of dye-processing wastewaters were raised due to industry of dyeing and textiles. It is difficult to treat them perfectly because they contain many poorly degradable matters, such as surfactants, ethylene glycol, polyvinyl alcohol, and so on. To improve the performances of conventional physicochemical treatment and activated sludge process, new systems of combining jet-loop reactor (JLR) with physicochemical treatment were developed. Volumetric oxygen transfer coefficient ($k_{L}a$) of JLR was significantly larger than that of air-lift reactor. Also, for the effective treatment of dye-processing wastewater, JLR with active carbon supports (JLRAS) were investigated. Removal efficiency of BOD, $COD_{Mn}$, $COD_{Cr} and color were found as 99, 86, 84, 83%, respectively, when HRT was 8 hrs. And performance of JLRAS was rapidly restored after step change of $COD_{Mn}$ loading late. The optimal coagulant and dosage of second physicochemical treatment after JLRAS were polyferric sulfate and 130 mg/L, respectively, when removal efficiencies of $COD_{Mn} and color were 85 and 73%, respectively. In conclusion, this system enables the reduction of operation cost, and the effective removal of many organics.

오늘날 섬유 염색공정에서 발생하는 염색폐수로 인해 많은 문제점들을 야기한다. 염색폐수에는 난분해성의 EG, PVA, TPA, 여러 종류의 계면활성제가 포함되어 있어 완전하게 처리하기가 어렵다. 현재 일반적으로 사용하고 있는 물리화학적 처리와 활성오니공정의 처리성을 향상하기 위하여 jet-loop reactor (JLR)와 물리화학적 처리를 결합한 새로운 공정을 개발하였다. JLR의 부피산소전달계수는 air-lift 반응기에 비해 아주 우수하였다. 또한 좀더 효율적인 처리를 위하여 JLR에 활성탄 담체를 적용하여 (JLRAS) 실험하였다. 체류시간이 8시간일 때 BOD, $COD_{Mn}$, $COD_{Cr}$, 색도 제거율은 각각 99, 86, 84, 83%로 우수하였다. JLRAS 성능은 $COD_{Mn}$의 부하 변동에도 아주 빠르게 회복되었다. 2차 물리화학적 응집처리의 최적 응집제로는 폴리황산제2철이며 130 mg/L 투입하였을때 $COD_{Mn}$과 색도의 제거율은 자각 85, 73%였다. 결론적으로 이 공정으로 난분해성의 많은 유기물을 효율적으로 처리할 수 있으며 운전비용도 감소시킬 수 있었다.

Keywords

References

  1. Gorrafa, A. A. M. (1980), Caustic treatment of polyester filament fabrics, Textile Chern. Color. 12(4), 83-90
  2. Yoon, H. K. and C. N. Choi (1984), A study on the weight loss of polyester fabric in caustic soda solution of organic solvent/water, J. Kor. Soc. Textile Eng. Chern. 21(2), 13-20
  3. Song, S. K. and S. Y. Kim (1983), A study on theweight loss of polyester fiber by alkali treatment, J. Kor. Soc. Textile Eng. Chern. 20(4), 9-15
  4. Park Y. K., C. H. Lee, J. D. Rhee, M. K. Lee and B. R. Cho (1981), A systematic treatment of waste water for dyeing industry complex, J. Environ. Res. [nst. 1(1), 24-30
  5. Park Y. K., C. H. Lee, and M. K. Lee (1982), Optimization of activated sludge process design for the waste water from the large-scale dyeing industrial complex, J. Environ. Res. Inst. 2(1), 25-32
  6. Park Y. K. and J. H. Kang (1982), Ozonolysis of acid dyes in aqueous solutions, J. Environ. Res. [nst. 2(1), 33-40
  7. Chapman, T. D. and L. C. Matsch (1975), Effect of high dissolved oxygen concentration in activated sludge system, J. Water Pollut. Control, 151-161
  8. Irvine, A. W. (1979), Sequencing batch biological reactorsan overview, WPCF, 5., 235-243
  9. Tyagi R. D. and K. Vembu (1982), Wastewater treatment by immobilized cells, p.15, CRC Press, Boston
  10. Hegemann, W. (1984), A combination of the activated sludge process with fixed film biomass to increase the capacity of wastewater treatment plant, Wat. Sci. Tech., 16, 119-130
  11. Blenke, H. (1985), Biochemical loop reactors fundamentals of biochemical engineering, p.465, Weinheim VCH Verlagsgesellschaft
  12. Velan, M. and T. K. Ramanujam (1991), Hydrodynamics in down flow jet loop reactor, Can. J. Chern. Eng. 69, 1257-1261 https://doi.org/10.1002/cjce.5450690605
  13. Liang, W. (1996), Flow characteristics and mixing properties in a high velocity liquid-solid loop reactor, Chern. Eng. J. 63(3), 181-188 https://doi.org/10.1016/S0923-0467(96)03098-9
  14. Snape, J. B. (1995), Liquid-phase properties and sparger design effects in an external-loop airlift reactor, Chern. Eng. Sci. 50(20), 3175-3186 https://doi.org/10.1016/0009-2509(95)00167-4
  15. Kienle, A. (1995), On the dynamics of the circulation loop reactor numerical methods and analysis, Chernical Eng. Sci. 50(15), 2361-2375 https://doi.org/10.1016/0009-2509(95)00112-I
  16. Kersting, C. H. (1995), Residence time distribution of a screw-loop reactor ; experiments and modeling, Chern. Eng. Sci. 50(2), 299-308 https://doi.org/10.1016/0009-2509(94)00236-K
  17. Seung, K. D., W. R. Ryu, I. H. Kim and M. H. Cho (2001), Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process- II. Effect of $COD/N$ on Removal of Nitrogen and Organics, Kor. J. Biotech. Bioeng., 16(2), 140-145
  18. Seung, K. D., W. R. Ryu, I. H. Kim and M. H. Cho (2001), Removal of Ammonia Nitrogen and Organics from Piggery Wastewater Using BACC Process- I . Comparison of Activated Sluge Process, Kor. J. Biotech. Bioeng., 16(2), 133-139
  19. Michael L. Shuler and Fikret Kargi (1992), Bioprocess Engineering, pp.307-31l, Prentice-Hall, New Jersey.
  20. APHA, AWWA, WEF (1992), Standard Methods for the Examination of Water Wastewater, 18th Ed., p5520