DOI QR코드

DOI QR Code

명아주과 3종 식물의 염 환경에 대한 적응특성의 비교

Adaptations and Physiological Characteristics of Three Chenopodiaceae Species under Saline Environments

  • 송승달 (경북대학교 자연과학대학 생물학과) ;
  • 김진아 (경북대학교 자연과학대학 생물학과) ;
  • 추연식 (경북대학교 자연과학대학 생물학과) ;
  • 배정진 (경북대학교 자연과학대학 생물학과) ;
  • 김인숙 (경북대학교 자연과학대학 생물학과) ;
  • 추보혜 (경북대학교 자연과학대학 생물학과) ;
  • 이인중 (경북대학교 농업생명과학대학 농학과)
  • 발행 : 2002.06.01

초록

건조 및 염 환경에 우점종으로 분포하고 있는 명아주과 식물의 염 및 무기 영양 농도에 다른 생리적 적응특성을 비교하기 위해 염습지에 널리 분포하는 칠면초(Suaeda japonica), 퉁퉁마디(Salicornia herbacea) 및 채소로 재배되는 근대(Beta vulgaris var. 챠침)를 재료로 하여 염 농도 (0, 50, 100, 200, 400 mM NaCl) 및 무기 영양염 농도(Hoagland 용액의 1/1, 1/5, 1/10배액)를 달리하여 식물의 엽생장과 질소, 무기 이온, 전기 전도도 및 삼투조절물질의 변화를 정량적으로 분석하였다. 3종 명아주과 식물은 무기영양 및 염의 농도변화에 대해 식물체에 상당량의 염을 축적하였으며, 높은 내염성 기구를 통해 400 mM NaCl 처리에서도 현저히 생장을 촉진하는 호염성의 퉁퉁마디와 200 mM NaCl 처리까지 약간의 생장 촉진을 보이는 근대 및 높은 내염성을 가지면서 50 mM NaCl 이상 처리구에서 약간의 생장 저해를 보이는 칠면초의 세가지 염내성의 종 특성을 보였다. 무기이온의 동태에 있어서 3종 식물은 무기 영양 및 염 농도와 무관하게 체내에 소량의 수용성 Ca을 함유하였고(<10μM/g plant water), K이온은 염 농도가 증가함에 다라 다소 감소하였으며, Na+과 Cl-은 배지의 무기 영양과는 무관하게 염 농도가 증가함에 따라 현저히 증가하였다. 총 질소 함량은 무기 영양 및 염의 농도가 증가함에 따라 감소하는 경향을 보였으며, 전기 전도도와 삼투몰농도는 무기영양보다 염의 농도가 증가함에 따라 증가하는 양상을 보였다. Glycinebetaine과 proline의 함량은 각각 0.2∼2.5 μM/g plant water와 0.1 ∼ 0.6 ㎛M/g plant water였고, 50mM NaCl 처리구에서 최대치를 보였다.

Three species of Chenopodiaceae, i.e. Suaeda japonica, Salicomia herbacea, Beta vulgaris var. cicla, were investigated to compare the physiological characteristics through inoic balances and osmoregulations under different environmental salt gradients. Plats were harvested in two weeks from treatments with salt gradients (0, 50, 100, 200 and 400 mM NaCl) and mineral nutrition gradients(1/1, 1/5, 1/10 dilutions of Hoagland solution). Plants were analyzed for growth responses, ionic balances, osmolalities, conductivities, glycinebetaine and proline contents quantitatively. Three plants of Chenopodiaceae accumulated slats into tissues unlike some salt sensitive species, and showed unique adaptation patterns to overcome saline environments, i.e. strong growth stimulation for Salicomia herbacea, growth negative tolerance for Suaeda japonica, and growth positive tolerance for Beta vulgaris var. cicla. The absorption of inorganic Ca/sup 2+/ ions was inhibited remarkably due to the excess uptake of Na+ with increasing salinity. The K+ content in plants was significantly reduced with increasing salinity. Total nitrogen content was reduced as mineral nutritions and salinity increased. Conductivity and osmolality increased with increasing salinity regardless of mineral nutritions. The ranges of glycinebetaine and proline contents were 0.2∼2.5 μM/g plant water and 0.1∼0.6μM/g plant water, respectively.

키워드

참고문헌

  1. Alam, S.M. 1994. Nutrient uptake by plants under stress conditions In Handbook of Plant and Crop Stress (Pessarakli, M. ed.). Marcel Dekker, New York. pp. 227-246.
  2. Ashraf, M.R., Z.U. Noor Zafar and M. Mujahid. 1994. Growth and ion distribution in salt stressed Melilotus indica (L.) ALL. and Medicago sativa L. Flora 189: 207-213. https://doi.org/10.1016/S0367-2530(17)30595-9
  3. Bernstein, L. 1975. Effects of salinity and sodicity on plant growth. Amer. Rev. Phytopathol. 13: 295-312. https://doi.org/10.1146/annurev.py.13.090175.001455
  4. Boursiner, P. and A. Lauchli, 1990. Growth responses and mineral nutrient relations of salt-stressed Sorghum. Crop Sci. 30: 1226-1233 https://doi.org/10.2135/cropsci1990.0011183X003000060014x
  5. Breckle, S.W. 1990. Salinity tolerance of different halophyte types. In N. Bassam and M. Dambroth, (eds.), Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht. pp. 167-175.
  6. Chavan, P.D. and A. Karadge. 1990. Influence of sodium chloride and sodium sulfate salinization on photosynthetic carbon assimilation in plant. Plant Physiol. 56: 201-207.
  7. Choo, Y.S. 1995. Mineral metabolism and organic solute pattern in Carex species of Austria - An Ecophysiological Approach. Ph. D Thesis, University of Vienna. pp. 1-339.
  8. Davenport, R.J., R.J. Reid and F.A. Smith. 1997. Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiol. Plant. 99: 323-327. https://doi.org/10.1111/j.1399-3054.1997.tb05419.x
  9. Hanson, A.D., J. Rivoal, M. Burnet and B. Rathinasabapathi. 1995. Biosynthesis of quaternary ammonium and tertiary sulphonium compounds in response to water deficit. In N. Smirnoff (ed.), Environment and Plant Metabolism. Bios Scientific Publishers, Oxford. pp. 189-198.
  10. Huetterer, F. and R. Albert. 1993. An ecophysiological investigation of plants from a habitat in Zwingendorf (Lower Austria) containing Galuber's salt. Phyton 33: 139-168.
  11. Kinzel, H. 1989. Calcium in the vacuoles and cell wall of plant tissue. Flora 182: 99-125. https://doi.org/10.1016/S0367-2530(17)30398-5
  12. Lee, J.S. and B.S. Ihm. 1986. The strategies of Salicornia herbacea and Suaeda japonica for coping with environmental fluctuation of salt marsh. Kor. J. Ecol. 4: 15-25.
  13. Pollak, J. and R. Albert. 1990. Physiological characterization of Boraginaceae with regard to their ecological status, Flora 184: 151-168. https://doi.org/10.1016/S0367-2530(17)31603-1
  14. Reimann, C. and S.W. Breckle. 1988. Salt secretion in some Chenopodium species. Flora 180: 289-296. https://doi.org/10.1016/S0367-2530(17)30324-9
  15. Reimann, C. and S.W. Breckle. 1993. Sodium relation in Chenopodiaceae, a comparative approach. Plant, Cell and Environment 16: 323-328. https://doi.org/10.1111/j.1365-3040.1993.tb00876.x
  16. Schachtman, D.P. E.S. Lagudah and R. Munns. 1992. The expression of salt tolerance from Triticum tanchii in hexapoid wheat. Theoretical and Applied Genetics 84: 714-719.
  17. Szabolcs. I. 1989. Salt- Affected Soils. CRC Press, Boca Raton, FL. pp. 120-143.
  18. Wyn Jones, R.G. and R. Storey. 1981. Betaines. In Paleg, L.G. and D. Aspinall, (eds.), Plant and Biochemistry of Drought Resistance in Plants Academic Press, Sydeny, Australia, pp. 121-136.

피인용 문헌

  1. Ultrastructural Characteristics of Three Chenopod Halophytes Lacking Salt Excretion Structures vol.53, pp.4, 2010, https://doi.org/10.1007/s12374-010-9119-6
  2. Isolation and identification of antioxidative compounds and their activities from Suaeda japonica vol.22, pp.6, 2013, https://doi.org/10.1007/s10068-013-0250-2