Ventilation Effect of the Greenhouse with Folding Panel Type Windows

패널굴절방식 환기창 온실의 환기효과

  • Kim, Jin-Young (Div. of Bio-Production Machinery, National Agricultural Mechanization Research Institute R.D.A.) ;
  • Lee, Si-Young (National Horticultural Research Institute, RDA) ;
  • Kim, Hyun-Hwan (National Horticultural Research Institute, RDA) ;
  • Chun, Hee (National Horticultural Research Institute, RDA) ;
  • Yun, In-Hak (Coa Engineering)
  • Published : 2002.01.01

Abstract

In this study, new development of natural ventilation window was accomplished to control environment of greenhouse with no use of farced ventilation during hot season. The ventilation effect of developed ventilation window was investigated in experimental greenhouse which was designed using side wall panel and folding type panel fur natural ventilation. Folding panel type ventilation window was designed to open upper part of the side wall and top of the roof using two hinges which are located bottom of the side wall and the roof panel to grab one side of each panels and guide the other side along with the guidance rail. Developed ventilation window has top ventilation part with maximum moving distance X=ι (1-cos$\theta$)=848.5 mm and side ventilation part with maximum moving distance Y=ι/2 $\times$sin$\theta$=1,184.4 mm at 45$^{\circ}$ of theoretical opening angle. It took 4.5 minutes to open roof vent fully and temperature at 1.2 and 0.8 m height decreased after 1 minute from starting opening and became equilibrium state maintaining 3-4$^{\circ}C$ difference after 2 minutes from complete opening. Air exchange rate was 15.2~39.3 h$^{-1}$ which was more than 10~15 h$^{-1}$ of continuous type and Venlo type greenhouse. The descent effect of temperature by ventilation windows was two times higher than Venlo type greenhouse.

본 연구는 여름 같은 고온기나 외부온도가 높지 않아도 시설내 온도가 많이 상승하는 봄 .가을 같은 시기에 온실내 고온 공기를 외부로 신속하게 유출시켜 강제환기를 사용하지 않고도 온실내부의 환경을 조절 할 수 있는 새로운 자연 환기창을 개발하는데 목적을 두고 수행하였다 패널굴절방식 측창은 지면에 가까운 쪽의 패널 하부에 절점을 두고 패널 상부가 측고 부위로부터 가이드 레일을 따라 하향하도록 구성하여 창이 개방되게 하였고, 천창은 측고 부위에 절점을 두고 용마루 쪽의 패널 상부가 가이드 레일을 따라 경사진 지붕면을 따라 하향하도록 구성하여 고온 공기층이 정체되어 있는 온실 상부인 측고 부위와 용마루 부위가 개방되도록 하였다. 굴절 패널의 상부 개방거리는 X=L(1-cos$\theta$)로 나타낼 수 있고 측면 개방 거리는 Y=L/2$\times$sin$\theta$로 나타낼 수 있다. 천창 개방시간은 4분 20초 소요되었으며 개방 시작한 2분 후부터 온도가 하강하기 시작하였고, 완전 개방 2분 후부터는 외기온과의 온도차 3~4$^{\circ}C$정도를 유지하면서 평형상태를 유지하였다. 패널굴절방식 환기창 온실의 환기성능은 체적환기량이 22.3-94.3m$^3$.m$^{-2}$ .h$^{-1}$이었으며, 환기 횟수는 15.2~39.3회.h$^{-1}$로 나타나 일반적인 연속형 천창의 10~15회.h$^{-1}$ 정도에 비해 환기효과가 높은 것으로 나타났다. 그리고 벤로형 온실과의 천창개폐시 온도하강을 비교하였을 때 환기효과가 2배 이상 높은 것으로 판단되었다.$_{r}$", $\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.加的)으로 되거나 과가황(過加黃)이 될 우려가 있는 제조공정(製造工程)에서는 흔히들 이 방법(方法)을 무시(無視)하고 있다. 여기서 강조(强調)해 두어야 할 것은 항상 제품(製品)의 외부(外部)를 완전(完全)히 가황(加黃)시킬 필요(必要)는 없다는 것이다. 다공성(多孔性)이나 기포생성(氣泡生成)을 조장(助長)하는 불량가황상태(不良加黃狀態)와 표면(表面)에서의 과가황상태간(過加黃狀態間)의 균형(均衡)을 취(取)해 줘야 하는데 물론(勿論) 이때는 가황시간(加黃時間)을 단축(短縮)시켜야 한다는 경제적(經濟的)인 측면(側面)도 아울러 고려(考慮)해야 한다

Keywords

References

  1. Boulard, T., A. Bailie. 1993. A Simple Greenhouse Climate Control Model Incorporating Effects of Ventilation and Evaporative cooling. Agricultural and Forest Meteorology 65:145-157 https://doi.org/10.1016/0168-1923(93)90001-X
  2. Kim, H.H., S.Y. Lee, R Chun, Y.I. Nam, and Y.S. Kwon. 1996. Improvement of ventilation method in greenhouse. Rep. of NHRI, RDA 96:538-540 (in Korean)
  3. Kim, J.H., C.S. Kim, G.R Koo, and K.M. Lee. 1995. Fundamental Study for the Automatic control system in greenhouse using microcomputer(III). J. Kor. Soc. Agr. Mac 20(2): 162-172 (in Korean)
  4. Kim, M.K., K.S. Kim, and H.J. Kwon. 2000. The cooling effect of fog cooling system as affected by air exchange rate in natural ventilation greenhouse. J. Bio. Env. Con. 10(1):10-14 (in Korean)
  5. Lee, G.M. 1994. Management during hot season of fruit production in greenhouse. the Korean Res. Soc. for Protected Hor. 7(2):23-31 (in Korean)
  6. Lee, S.G., H.W Lee, Y.H. Kim, J.H. Lee, J.W Lee, H.S. Nam, Y.C. Yoon, and W.M. Seo. 1998. Optimum design of greenhouse structure for efficient environment control and energy saving. MAP. report: 126-133 (in Korean)
  7. Nam, S.W. 2000. Application of heat balance model to design of ventilation and cooling greenhouses. J. Bio. Env. Con. 9(4):201-206 (in Korean)
  8. Suh, W.M. and Y.C. Yoon. 1996. Analysis of greenhouse thermal environment by model simulation. J. Bio. Fac. Env. 5(2):215-235 (in Korean)
  9. Taeke de Jong. 1990. Natural ventilation of large multi-span greenhouse. IMAG-DLO report 113
  10. Woo, Y.H., J.M. Lee, and Y.I. Nam. 1995. Forced ventilation number of air changes to set point of inside air temperature in summer glasshouse. J. Bio. Fac. env. 4(2):223-231 (in Korean)