References
- A. Aggarwal, The art gallery theorem : its variatiions, applications, and algorithmic aspects, Ph.D. thesis, Johns Hopkins Univ., 1984
- Y. J. Chiang and R. Tammasia, 'Optimum shortest path and minimum link path queries between two convex polygons inside a simple polygonal obstacle,' Info. Proc. Lett., vol. 28, pp. 39-44, 1994 https://doi.org/10.1016/0020-0190(88)90141-X
- W. P. Chin and S. Ntafos, 'Optimum watchman route,' Info. Proc. Lett., vol. 28, pp. 39-44, 1988 https://doi.org/10.1016/0020-0190(88)90141-X
- W. P. Chin;S. Ntafos, 'Shortest watchman routes in simple polygons,' Discrete Comput. Geometry, Vol. 6, pp. 9-31, 1991 https://doi.org/10.1007/BF02574671
- V. Chvatal, 'A combinatorial theorem in plane geometry,' J. Combin. Thoery ser. B, Vol. 18, pp. 39-41, 1975 https://doi.org/10.1016/0095-8956(75)90061-1
- J. I. Doh and K. Y. Chwa, 'An algorithm for determining internal line visibility of a simple polygon,' Report no. CS-TR-88-33, Korea Advanced Institute of Science and Technology, 1988
- L. J. Guibas and J. Hershberger, 'Optimal shortest path queries in a simple polygon,' Proc. 3rd ACM Symposium on Computational Geometry, Waterloo, pp. 50-63, 1987 https://doi.org/10.1145/41958.41964
- H. Edelsbrunner, J. O'Rourke, and E. Welzl, 'Stationing guards in rectilinear art galleries,' Comput. vision, Graphics, and Image Process. Vol. 28, pp. 167-176, 1984
- P. J. Heffernan,'An optimal algorithm for the two guard problem,' Proc. 9th ACM Symp. on Computational Geometry, pp. 348-358, 1993 https://doi.org/10.1145/160985.161163
- C. Icking and R. Klein, 'The two guards problem,' Proc. 7th ACM Symp. on Computational Geometry, pp. 166-175, 1991 https://doi.org/10.1145/109648.109667
- J. Kahn, M. Klawe, and D. Kleitman, 'Traditional galleries require fewer watchman,' SLAM J. Alg. Disc. Meth., Vol. 4, pp. 194-206, 1983 https://doi.org/10.1137/0604020
- S. H. Kim, Visibility algorithms under distance constraint, Ph.D. dissertation, Korea Advanced institute of Science and technology, 1994
- S. H. Lee, K. Y. Chwa, 'Some chain visibility problems in simple polygon,' Algorithmica, Vol. 5, pp. 485-507, 1990 https://doi.org/10.1007/BF01840400
- J. O'Rourke, 'An alternative proof of the rectilinear art gallery theorem,' J. of Geometry, Vol. 21, pp. 118-130, 1983 https://doi.org/10.1007/BF01918136
- W. Lenhart, R. Pollack, J. R. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides, and C. Yap, 'Computing the link center of a simple polygon,' Discrete Comput. Geom., Vol. 3, pp. 281-293, 1988 https://doi.org/10.1007/BF02187913
- B. J. Nilsson, Guarding Art Galleries-Methods for Mobile Guards, Ph. D. thesis, Lund Univ., 1995
- J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987
- S. Y. Shin, 'Visibility in the plane and its related problems,' Ph.D. dissertation, Michigan Univ., 1986
- S. Suri, 'On some link distance problems in a simple polygon,' IEEE Trans. Robotics and Automation, vol, 6, pp. 108-113, 1990 https://doi.org/10.1109/70.88124
- X. H. Tan, T. Hirata, 'Constructing shortest watchman routes by divide and conquer,' Proc. 4th Intern. Symp. on Algorithms and Computation, pp. 68-77, Springer Verlag, 1993 https://doi.org/10.1007/3-540-57568-5_236
- 류상률, 서대화, 김승호, '단조 다각형에서 최단 경비원 경로를 구하는 알고리즘,' 정보과학회 논문지 제23권 제3호, pp. 244-258, 1996
- 류상률, 김승호, '단조 다각형에서 최소링크를 가진 경비원 경로를 구하는 최적 알고리즘,' 정보과학회 논문지 제24권 제2호, pp. 122-130, 1997
- 류상률, '단조 다각형에서 최단 경비원 경로를 구하는 최적 알고리즘,' 경북대학교 박사학위 논문, 1998
- 유관희, 좌경룡, 신성용, '단순 직교 다각형에서 직교 거리 문제에 관한 선형 시간 알고리즘,' 정보 과학회 논문지 제 23권 제 6호, pp. 573-579, 1996
- 이상호, 문지영, '두 동적 감시자의 감시 체인에 관한 문제', 정보 과학회 논문지 제20권 제9호, pp. 1252-1262, 1993