References
- S. L. Lee, S. J. Chun, D. H. Kim, J. H. Lee, and C. W. Chung, Similarity search for multidimensional data sequences, Proceedings of IEEE Int'l Conference on Data Engineering, pages 599-608, 2000 https://doi.org/10.1109/ICDE.2000.839473
- A. Guttman, R-trees: a dynamic index structure for spatial searching, ACM SIGMOD, pages 47-57, 1984 https://doi.org/10.1145/602259.602266
- N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The R-tree: an efficient and robust access method for points and rectangles, ACM SIGMOD, pages 322-331, 1990 https://doi.org/10.1145/93605.98741
- S. Berchtold, D. Keim, and H. Kriegel, The X-tree: an index structure for high-dimensional data, Proceedings of VLDB, pages 28-39, 1996
- T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+ tree: a dynamic index for multi-dimensional objects, Proceedings of VLDB, pages 507-518, 1987
- R. T. Ng and J. Han, Efficient and effective clustering methods for spatial data mining, Proceedings of VLDB, pages 144-155, 1994
- H. J. Zhang, C. Y. Low, S. W. Smoliar, Video parsing and browsing using compressed data, Multimedia Tools and Application 1, pages 89-111, 1995 https://doi.org/10.1007/BF01261227
- M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Int'l Conference on Knowledge Discovery in Databases and Data Mining, pages 226-231, Portland, Oregon, 1996
- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, ACM SIGMOD, pages 94-105, 1998 https://doi.org/10.1145/276304.276314
- S. Guha, R. Rastogi, and K. Shim, CURE: An efficient clustering algorithm for large databases, ACM, pages 73-84, 1998 https://doi.org/10.1145/276304.276312
- C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, Fart algorithms for projected clustering, ACM SIGMOD, pages 61-72, 1999 https://doi.org/10.1145/304182.304188
- D. DeMenthon, V. Kobla, and D. Doermann, Video summarization by curve simplification, ACM Multimedia, pages 211-218, Bristol, UK, 1998 https://doi.org/10.1145/290747.290773
- B. Gunsel, A. M. Ferman, and A. M. Tekalp, Video indexing through integration of syntactic and semantic features, Proceedings of IEEE Workshop on Applications of Computer, pages 90-95, 1996 https://doi.org/10.1109/ACV.1996.572007
- A. Hampapur, R. Jain, and T. Weymouth, Digital video segmentation, ACM Multimedia, pages 357-364, 1994 https://doi.org/10.1145/192593.192699
- T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An efficient data clustering method for very large databases. ACM SIGMOD, pages 103-114, 1996 https://doi.org/10.1145/233269.233324
- M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, Query by image and video content: the QBIC system, IEEE Computer, Vol. 28, No. 9, pages 23-32, 1995 https://doi.org/10.1109/2.410146
- C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence matching in time-series databases, ACM SIGMOD, 1994 https://doi.org/10.1145/191839.191925
- V. Kobla, D. Doermann, and C. Faloutsos, Video Trails: Representing and visualizing structure in video sequences, Proceedings of ACM Multimedia, pages 335-346, Seattle, Washington, 1997 https://doi.org/10.1145/266180.266384
- S. L. Lee, and C. W. Chung, On the effective clustering of multidimensional data sequences, Information Processing Letters. Vol.80, pages 87-95, 2001 https://doi.org/10.1016/S0020-0190(01)00144-2