VDCluster : A Video Segmentation and Clustering Algorithm for Large Video Sequences

VDCluster : 대용량 비디오 시퀀스를 위한 비디오 세그멘테이션 및 클러스터링 알고리즘

  • 이석룡 (한국외국어대학교 산업정보시스템공학부) ;
  • 이주홍 (인하대학교 컴퓨터공학부) ;
  • 김덕환 (한국과학기술원 정보통신공학과) ;
  • 정진완 (한국과학기술원 전자전산학과)
  • Published : 2002.06.01

Abstract

In this paper, we investigate video representation techniques that are the foundational work for the subsequent video processing such as video storage and retrieval. A video data set if a collection of video clips, each of which is a sequence of video frames and is represented by a multidimensional data sequence (MDS). An MDS is partitioned into video segments considering temporal relationship among frames, and then similar segments of the clip are grouped into video clusters. Thus, the video clip is represented by a small number of video clusters. The video segmentation and clustering algorithm, VDCluster, proposed in this paper guarantee clustering quality to south an extent that satisfies predefined conditions. The experiments show that our algorithm performs very effectively with respect to various video data sets.

본 논문에서는 비디오 저장이나 검색과 같은 비디오 정보 처리를 위한 중요한 기초 연구로써 비디오의 표현을 위한 효과적인 기법을 제안한다. 비디오 데이타 세트는 수초에서 수분 사이의 상연 시간을 갖는 비디오 클립들의 집합이며, 각 비디오 클립은 연속된 비디오 프레임들로 구성되어 있다. 이 비디오 클립은 다차원 데이타 시퀀스(multidimensional data sequence: MDS)로 표현될 수 있으며, 프레임 사이의 시간적인 정보를 고려하여 비디오 세그먼트로 나누어 지고, 한 클립 내에서 서로 유사한 세그먼트들은 다시 비디오 클러스터로 군집화된다. 따라서, 각 비디오 클립은 소수 개의 비디오 클러스터로 표현되어 진다. 본 논문에서 제안한 비디오 세그멘테이션 및 클러스터링 알고리즘 VDCLuster는 사전에 정의된 일정 수준의 클러스터링 품질을 보장하고 있으며, 다양한 비디오 시퀀스에 대한 실험을 통하여 알고리즘의 효과를 입증한다.

Keywords

References

  1. S. L. Lee, S. J. Chun, D. H. Kim, J. H. Lee, and C. W. Chung, Similarity search for multidimensional data sequences, Proceedings of IEEE Int'l Conference on Data Engineering, pages 599-608, 2000 https://doi.org/10.1109/ICDE.2000.839473
  2. A. Guttman, R-trees: a dynamic index structure for spatial searching, ACM SIGMOD, pages 47-57, 1984 https://doi.org/10.1145/602259.602266
  3. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The R-tree: an efficient and robust access method for points and rectangles, ACM SIGMOD, pages 322-331, 1990 https://doi.org/10.1145/93605.98741
  4. S. Berchtold, D. Keim, and H. Kriegel, The X-tree: an index structure for high-dimensional data, Proceedings of VLDB, pages 28-39, 1996
  5. T. Sellis, N. Roussopoulos, and C. Faloutsos, The R+ tree: a dynamic index for multi-dimensional objects, Proceedings of VLDB, pages 507-518, 1987
  6. R. T. Ng and J. Han, Efficient and effective clustering methods for spatial data mining, Proceedings of VLDB, pages 144-155, 1994
  7. H. J. Zhang, C. Y. Low, S. W. Smoliar, Video parsing and browsing using compressed data, Multimedia Tools and Application 1, pages 89-111, 1995 https://doi.org/10.1007/BF01261227
  8. M. Ester, H. P. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Int'l Conference on Knowledge Discovery in Databases and Data Mining, pages 226-231, Portland, Oregon, 1996
  9. R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, ACM SIGMOD, pages 94-105, 1998 https://doi.org/10.1145/276304.276314
  10. S. Guha, R. Rastogi, and K. Shim, CURE: An efficient clustering algorithm for large databases, ACM, pages 73-84, 1998 https://doi.org/10.1145/276304.276312
  11. C. C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park, Fart algorithms for projected clustering, ACM SIGMOD, pages 61-72, 1999 https://doi.org/10.1145/304182.304188
  12. D. DeMenthon, V. Kobla, and D. Doermann, Video summarization by curve simplification, ACM Multimedia, pages 211-218, Bristol, UK, 1998 https://doi.org/10.1145/290747.290773
  13. B. Gunsel, A. M. Ferman, and A. M. Tekalp, Video indexing through integration of syntactic and semantic features, Proceedings of IEEE Workshop on Applications of Computer, pages 90-95, 1996 https://doi.org/10.1109/ACV.1996.572007
  14. A. Hampapur, R. Jain, and T. Weymouth, Digital video segmentation, ACM Multimedia, pages 357-364, 1994 https://doi.org/10.1145/192593.192699
  15. T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: An efficient data clustering method for very large databases. ACM SIGMOD, pages 103-114, 1996 https://doi.org/10.1145/233269.233324
  16. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, Query by image and video content: the QBIC system, IEEE Computer, Vol. 28, No. 9, pages 23-32, 1995 https://doi.org/10.1109/2.410146
  17. C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, Fast subsequence matching in time-series databases, ACM SIGMOD, 1994 https://doi.org/10.1145/191839.191925
  18. V. Kobla, D. Doermann, and C. Faloutsos, Video Trails: Representing and visualizing structure in video sequences, Proceedings of ACM Multimedia, pages 335-346, Seattle, Washington, 1997 https://doi.org/10.1145/266180.266384
  19. S. L. Lee, and C. W. Chung, On the effective clustering of multidimensional data sequences, Information Processing Letters. Vol.80, pages 87-95, 2001 https://doi.org/10.1016/S0020-0190(01)00144-2