A Da7a-Recycling Sign Algorithm for Adaptive Equalization

데이터 재활용 방식을 적용한 부호 알고리듬

  • 김남용 (삼척대학교 정보통신공학과)
  • Published : 2002.02.01

Abstract

A new Sign algorithm which has improved convergence speed is presented. The data-recycling technique, whose coefficients are multiply adapted in a symbol time period by recycling the received data, is applied to Sign algorithm which has few multiplications. Sign algorithm has very few multiplications and is the most easily implemented, but it gives small rate of convergence relative to others. The proposed algorithm combines the advatage of Sign algorithm, few multiplications, and the virtue of Data-Recycling LMS algorithm, simplicity and fast convergence. The results of computer simulation show that the proposed algorithm has 2 times faster convergence rate than that of LMS algorithm. Comparing to Data-Recycling LMS algorithm, in similar convergence conditions, it requires half fewer multiplications.

이 논문에서 는 부호 알고리듬(Sign Algorithm)의 수렴성능을 향상시킨 새로운 Equalizer 알고리듬을 소개하였다. 이것은 입력 데이터를 재활용하여 필터계수를 다중 갱신하는 Data-Recycling 방식을 곱셈 계산이 적은 Sign 알고리듬에 적용하였다. Sign 알고리듬은 계산량이 적고 구현이 간단한 장점을 가지나 느린 수렴속도의 한계를 가지고 있다. 제안한 알고리듬은 Sign 알고리듬의 계산량이 적은 장점과 Data-Recycling LMS 알고리듬의 단순성과 빠른 수렴속도를 가지는 장점을 결합한 구조의 알고리듬이다. 컴퓨터 시뮬레이션에서 제안된 적응 등화 알고리듬은 LMS 알고리듬보다 2배 빠른 수렴 속도를 나타내었으며, 근사한 수렴성능에 조건에서 Data-Recycling LMS와 비교할 때 반으로 줄어든 곱셈 계산량을 보였다.

Keywords

References

  1. Proc. IEEE v.73 no.9 Adaptive Equalization S. U. H. Qureshi https://doi.org/10.1109/PROC.1985.13298
  2. B. S. T. J. v.48 Adaptive equalization of high despersive channels for data transmision A. Gersho
  3. IEEE Trans. Inform. v.IT-15 An Adaptive Receiver for Digital Signalling Through Channel With Intersymbol Interference J. G. Proakis;J. H. Miller
  4. Digital Communications J. G. Proakis
  5. Journal of Electrical Engineering and Information Science v.3 no.1 Interference Rejection using the Data-Recycling LMS Algorithm in DS Spread-spectrum Communications Nam Yong Kim
  6. IEEE Trans on ASSP v.ASSP-35 no.4 Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm V. J. Mathews;S. H. Cho
  7. IEEE Trans. on ASSP v.ASSP-38 no.11 Optimum step size of sign algorithm for nonstationary adaptive filtering E. Eweda
  8. Adaptive Signal Processing B. Widrow
  9. IEEE Trans. Circuits Systems v.CAS-28 no.6 Block Implementation of Adaptive Digital Filters G. A. Clark;S. K. Mitra;S. R. Parker
  10. IEEE Signal Processing Megazine v.9 no.1 Frequency-Domain and Multirate Adaptive Filtering J. J. Shynk https://doi.org/10.1109/79.109205