Abstract
The objective of this study is to provide a Precise form of spatial normalization with affine transformation. The quantitative comparison of the brain architecture across different subjects requires a common coordinate system. For the common coordinate system, not only global brain but also a local region of interest should be spatially normalized. Registration using mutual information generally matches the whose brain well. However. a region of interest may not be normalized compared to the feature-based methods with the landmarks. The hybrid method of this Paper utilizes feature information of the local region as well as intensity similarity. Central gray nuclei of a brain including copus callosum, which is used for feature in Schizophrenia detection, is appropriately normalized by the hybrid method. In the results section. our method is compared with mutual information only method and Talairach mapping with schizophrenia Patients. and is shown how it accurately normalizes feature .
본 연구의 목적은 선형 변환을 이용한 레지스트레이션의 정확도를 높이는데 있다. 서로 다른 개인간의 뇌영상을 비교분석하기 위해서는 공통된 좌표계로 각 영상을 변환하는 작업이 필요하다 정확한 변환을 위해서는 전체적인 뇌영상의 매치와 국소적 영역의 매치가 모두 중요하다 일반적으로 상호정보를 이용한 레지스트레이션은 전체적인 뇌영상을 매치시키는데 유리하다. 그러나 관심영역에 대한 매치는 특징기반 레지스트레이션 방법이 더 유리하다. 본 논문에서 제시하는 통합 레지스트레이션은 특징정보와 더불어 복셀기반의 상호정보를 함께 사용하였다. 이러한 접근 방법은 정신분열증을 판단하는 기준으로 많이 사용되는 뇌량을 포함하는 뇌의 중심부분의 매칭에 유리함을 실험을 통해 확인하였다 상호정보만을 사용하는 복셀기반 레지스트레이션이나 탈라이락 좌표계를 이용한 정규화에 비해 본 연구의 통합 레지스트레이션은 전체적 뇌영상 뿐만 아니라 관심 영역에서의 레지스트레이션 오차가 더 작았다.