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Abstract

In this paper, we introduce the notion of smooth neighborhoods in smooth topological spaces and investigate some of
their properties. In particular, we can obtain some smooth topologies from a smooth neighborhood system.
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1. Introduction

Shostak [11] introduced the fuzzy topology as an
extension of Chang’s fuzzy topology [1]. In 1992, the
same concept under the name of gradation of openness
was rediscovered by Chattopadhyay et.al[2]. Ramadan
and his colleagues [569] called it smooth topology. It
has been developed in many directions [3,4,8]. Demirci
[4] and Ramadan [10] introduced smooth neighborhood
structures in other viewpoints.

In this paper, we introduce the notion of smooth
neighborhoods in smooth topological spaces with a
different viewpoint in [4,10] and investigate some of their
properties. In particular, we can obtain some smooth
topologies from a smooth neighborhood system.

Throughout this paper, let X be a non-empty set and
I=10,1] be an unit interval. The family I* denotes the
set of all fuzzy subsets of a given set X. For each
asl, let _a denote the constant fuzzy subset of X with
value . All the other notations and the other definitions
are standard in fuzzy set theory.

2. Preliminaries

Definition 2.1 [9,111 A mapping zI*—I is called a
smooth topology on X if it satisfies the following
conditions:

(0 d0)=«1=1,
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(02) for each Ay, 4.e1%, A ;A=A AHAL),
(03) o l\E/F/i )= i/e\"r(A ) for each {&;| iencIX.

The pair (X, 1) is called a smooth topological space.

Remark 2.2 If a smooth topology r on X satisfies the
following property «I¥)S{0,1}, then there is a
one-to-one correspondence between a smooth topology r
and a Chang’s fuzzy topology [1].

Definition 2.3 [11] Let (X, r,) and (Y, r;) be smooth
topological spaces. A map f(X,r,)—(Y,r,) is called

smooth continuous iff for every p=I” , we have

o (f T )z 1)

3. Smooth neighborhood structures
We define a smooth neighborhood system and we give
some of its properties.

Definition 3.1 Let (X, ) be a smooth topological space.

(1) A fuzzy set Ael” is a smooth neighborhood of a
point xeX iff there exists peI” with «(#)>0 such
that #<A, xesupp(p), where supp(p) = {xe X| x(x)>0}.

NiI*>] is called a
neighborhood system of x=X with respect to r if

VA | p<A, xesupp(p), p)>0}

(20 A mapping smooth

N =
0, otherwise.
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Theorem 3.2 Let (X,7) be a smooth topological
space. For each x€X, the smooth neighborhood system
N} satisfies the following properties:

(1) N(1) =1, for each x€X,

(2) if NXA)>0 for each A=I”, then xesupp(A),
(3) if A<y for each A, uel”, then NYN<N(w),
(4) for each A,pel”*,

NIAA®ZNLDANL 1),
(5) for each AeI”,

NAD VNN yermN;(”)) lp=<a}.

Proof. (1),(2) and (3) are easily proved from the
definition of NI .
(4) Suppose there exist A, xzel® and xeX such that

NANWEN(DNANLp).
Then there exists t=(0,1) such that
NIANAD LN LD AN ().

Since NXA)>t and NIXw)>t, there exist A,,uz,eI*
with xssupp(A ), x=supp(pe1), A;<4 and u,<g such
that #Z(A)>¢ fu)>t It implies xesupp(A Apy),
A\ <AAp such that oA Ap )= A DA e )¢
So, NAAAw> ¢t It is a contradiction.

(5) Suppose

NI OV NN ycsu/\m)N;(u)) | u<a}.

Since NXA))¢ there exists pel® with xesupp()
and <A such that «(x)> t. Furthermore, y=supp(y) and
p#<g such that

yeé}m)Nﬁﬂ) 2du)>t.

Hence,

VAN L) A( yesu/\mﬂ)NKﬂ)) | p<A}> e

It is a contradiction.
Definition 3.3 A mapping MX—I'" is called a smooth

neighborhood system on X iff it satisfies:
(N1) N (1) =1, for each x=X,

(N2) if N (A)>0 for each A=I”, then xe supp(A),
(N3) if A<y for each A, ueIX, then N ()<N (),
(N4) for each A,usI*,

NANDZNL)AN (1),
(N5) for each AeIl”,

NDSVINLINC /N N() 1u<A).
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Theorem 3.4 Let N: X—I'" be a mapping satisfying
conditions (NI1)-(N4) in Definition 3.3. We define a
mapping ry: I*-I by

N(A) ifA*0

xEs/u>1>(A)
1, if A=_10.

T A=

Then :
(1) ry is a smooth topclogy on X.

(2) If the mapping N is a smooth neighborhood system
on X , thenN,(A)=N."(d), for each x=X and
rer’x,

Proof (1) (O1) It is trivial from the definition of ry .

(02) 1 (AN
= N (AN

xe supp{A\p)

NADAN ()
xe supp(AAu)
X sup A/\;A)Nx(/{)/\( xEsu{}A/\u)Nx( ﬂ))
= AN\ NDNC N N
 MAAT ).
(03) Let {A; | iepcI™.
If }F/]/l ;= 0, then it is obvious that

g4 }E/]A =1z QTN(A .

If }C/J/l #_0),then there exists xe supp( \_E/]A D

which there exists k=] such that xe supp(2 ).
Thus,

N }E/]/{ DEN (A= xes{p\p(/lk)Nx(/i B =1MA,).

Hence

i }E/]A )= xesu{ﬂ(\‘/la,)N"( }E/]/l )= {;TN(/I .

Hence ry is a smooth topology on X.

(2) Let N be a smooth neighborhood system on X.
We have

NID =Vi{e ) | xssupp(p), p<2}
=VA{ ysm/\m,,)Ny(”) | xesupp(p), p<a}

<N (A). (since N (p) <N, (A)

Hence, N.'<N,.
Conversely, by (N5) of Definition 3.3,
NX(A)
SVNLIANC AN\ N () | g<i}
yes supp( 1)
= VAN LN( yﬁé}p(u)Ny(u)) | x€supp(p), u<i}
sV{ A NJUw | xssupp(p), p<i}
ye supp(p)

=VA{r ) | x=supp(y), p<i}
=N:"(A).



Theorem 3.5 Let (X, be a smooth topological space.
Then 7y{(A)=«(A) for each AeI*.

Proof If «{(A)=0 or A=, it is trivial.

If «(A)>0 and A+.0, then there exists xX such that
NUA)=(A). It implies

AN NAD=2).

x€ supp(A)

TN'(/D =

Theorem 3.6 Let (X,r) and (Y,7 be two smooth
topological spaces. If fF(X,0—(Y,7» is smooth
continuous, then N3,(D<NIF ()
for all x€X and Ael”.
Proof. For any x=X and Ael”, we have
Nio(d)
=V {n(w | Ax)esupp(p), u<i}
<V ) xesupp(F 1), £ (w) <f 1D}
<N ).

Example 3.7 Let X={a, b} be a set and
peI* as follows:

#w(a)=0.6, w(b)=0.3.
(1) We define a smooth fuzzy topology

1, if Ae{0,1}
q={ L i 1=y
2
0, otherwise.

From Definition 3.1(2), we obtain NI, N§: IX — I as
follows:

1, if A=_1,
NiD=1 L, it 1#izp
0,  otherwise.
1, if A=,
Ny = —é i 1#Azp
0.  otherwise.

From Theorem 3.4, we have
1, if Ae{g, 1}

rnl D= i 1Az,
0, otherwise.

Thus, 7y{A)=«4) for each iel”.
(2) We define N,,NzI*—I as follows:

Smooth neighberhood structures

1, if A=_1,
N (D)= —% if  1+A=p
0, otherwise.
1, if A=_1,
N = —31— i 1#Azp
0, otherwise,
Since
A =L
5 =N SNLINC N\ N () ="5,

it does not satisfy the condition (N5) of Definition3.3.
By Theorem 3.4, we have

1, if Ae{q,_1}
rMA)= —é— if 1>y,
0, otherwise,

We obtaine NL*, N3“I*-I as follows:

1, if A=1,
NIW={ i 1#azp

0, otherwise.

1, if A=,
N = —é i #Azu

0,  otherwise.
In general, N,#N:".

We can obtain another smooth topology from a
smooth neighborhood system.

Theorem 3.8 Let NMX—I" be a mapping satisfying
conditions (N1)-(N4) in Definition 3.3. We define a

mapping T xI%*—1 by
1 ifi=20

TA=1{ 1, ifNL)>0 foreach x=supp(A)

0 otherwise

Then

(1) Ty is a smooth topology on X.

(2) If the mapping N is a smooth neighborhood system,
thean(/i)SN,T”(/i), for each x€X and AerlX,
Furthermore, supp(N,) = supp(N ™).

Proof (1) (O1) Obvious.

(02) We show that TMA A1) 2 T MADAT MA5).

If TMKAD)=0 or TmAy)==0, it is trivial

If TMA,)=1 and T A,)=1, for each xesupp(A,/\A3),
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we have Proof If «A)=0 or A=, it is trivial.
NAALADEN LA DAN LA )>0. If «{A)>0 anch A# 0, then there exists xeX

such that N, (A)=(4).

It implies TMA1AA2)=1. It implies T y«{(A)=1=x(A).

(O3) We show that
Example 3.10 Let X,z and r as in Example 3.7.

T™ ,\C,/p/l )= QTN(’{ . By Theorem3.8, we obtain
If TpMA;)=0 for some ierl, it is trivial. 1, if A={0,1}
If TN(/i ,‘) =1 for all ZEI', for each TNI(A) — 1 if _l:’:AZ,U
xesupp( VA ), there exists jelI” with
ier 0, otherwise.
xesupp(d ;) and N(2,)>0. Hence T y{(A)=«A) for each AcI*.
So, Let peIX as follows:
N ALY AIZNL2))>0. o(a)=0.5, o(8)=0.
T ,-\e/,ﬁ D=1 We define N,, NgI*—I as follows :
(2). If N (A)=0, it is trivial. Let N,(A)>0. 1, if A=1,

Since, by (N5) of Definition 3.3,

N <VANGOAC N\ N ) | usad,

N ()= —% it 1#A>p
0, otherwise.
there exists pel” with g<A such that 1, if A=_1,

NADANC /N N (u)>0.
H yesuppy) Y K Nb(A): —%, if _l:f:AZp

Since yes/u\pb( #)N L)>0,that is, for each 0. otherwise.
vesupp(p), N,(10)>0, then T {(p)=1. For each p<A, since assupp(A) and
Thus, ND="%, TH=1.
N = VAT ) | xesupp(p), u<A)=1. Hence, we obtain
Thus, 1, if Ae{0, 1}
N )N, for each x€X and AeTl*. THA={ 1, if 1#i=p,
We will show that 0, otherwise.
supp(N ) = supp(N ). Since
Since

L =Ni0) YNLIN( N NJo) —+

NADSNQ), supp(N)Csupp(N; ™).
it does not satisfy the condition (N5) of Definition3.3.
Let A=supp(N!".Then ! -
So, 7=Nb(p) YN, "(p)=0.

KNI =VAT M) | x=supp(n), u<a).
In general,
There exists ge=I* with xesupp(p), 2<A such that .
T =1. NAD)£N,"(A).

Hence N (A)=N (u2)>0.
Thus Aesupp(N,). Thus, supp(NI"YCsupp(N,).
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