# Smooth neighberhood structures

A.A. Ramadan\*, Y.C. Kim\*\* and M.K. El-Gayyar\*\*\*

\*Department of Mathematics, Faculty of Science,
Cairo University, Beni-Suef, Egypt

\*\*Department of Mathematics,
Kangnung National University, Korea

\*\*\*Department of Mathematics, Faculty of Engineering,
Suez-Canal University, Port Said, Egypt

#### **Abstract**

In this paper, we introduce the notion of smooth neighborhoods in smooth topological spaces and investigate some of their properties. In particular, we can obtain some smooth topologies from a smooth neighborhood system.

Key Words: Smooth topological spaces, Smooth neighborhood structures, Smooth continuous maps

## 1. Introduction

Shostak [11] introduced the fuzzy topology as an extension of Chang's fuzzy topology [1]. In 1992, the same concept under the name of gradation of openness was rediscovered by Chattopadhyay et.al.[2]. Ramadan and his colleagues [5,6,9] called it smooth topology. It has been developed in many directions [3,4,8]. Demirci [4] and Ramadan [10] introduced smooth neighborhood structures in other viewpoints.

In this paper, we introduce the notion of smooth neighborhoods in smooth topological spaces with a different viewpoint in [4,10] and investigate some of their properties. In particular, we can obtain some smooth topologies from a smooth neighborhood system.

Throughout this paper, let X be a non-empty set and I=[0,1] be an unit interval. The family  $I^X$  denotes the set of all fuzzy subsets of a given set X. For each  $\alpha \in I$ , let  $\alpha$  denote the constant fuzzy subset of X with value  $\alpha$ . All the other notations and the other definitions are standard in fuzzy set theory.

#### 2. Preliminaries

**Definition 2.1** [9,11] A mapping  $r: I^X \rightarrow I$  is called a smooth topology on X if it satisfies the following conditions:

(O1) 
$$\tau(\underline{0}) = \tau(\underline{1}) = 1$$
,

Manuscript received september 15, 2001; revised Nobember 10. 2001.

(O2) for each 
$$\lambda_1, \lambda_2 \in I^X$$
,  $\tau(\lambda_1 \wedge \lambda_2) \geq \tau(\lambda_1) \wedge \tau(\lambda_2)$ , (O3)  $\tau(\bigvee_{i \in \Gamma} \lambda_i) \geq \bigwedge_{i \in \Gamma} \tau(\lambda_i)$  for each  $\{\lambda_i \mid i \in \Gamma\} \subset I^X$ .

The pair  $(X, \tau)$  is called a smooth topological space.

Remark 2.2 If a smooth topology r on X satisfies the following property  $r(I^X) \subseteq \{0,1\}$ , then there is a one-to-one correspondence between a smooth topology r and a Chang's fuzzy topology [1].

**Definition 2.3** [11] Let  $(X, \tau_1)$  and  $(Y, \tau_2)$  be smooth topological spaces. A map  $f(X, \tau_1) \rightarrow (Y, \tau_2)$  is called smooth continuous iff for every  $\mu \in I^Y$ , we have

$$\tau_1(f^{-1}(\mu)) \ge \tau_2(\mu)$$
.

### 3. Smooth neighborhood structures

We define a smooth neighborhood system and we give some of its properties.

**Definition 3.1** Let  $(X, \tau)$  be a smooth topological space.

- (1) A fuzzy set  $\lambda \in I^X$  is a smooth neighborhood of a point  $x \in X$  iff there exists  $\mu \in I^X$  with  $\tau(\mu) > 0$  such that  $\mu \leq \lambda$ ,  $x \in supp(\mu)$ , where  $supp(\mu) = \{x \in X | \mu(x) > 0\}$ .
- (2) A mapping  $N_x^{\tau}I^X \rightarrow I$  is called a smooth neighborhood system of  $x \in X$  with respect to  $\tau$  if

$$N_{x}^{\tau}(\lambda) = \begin{cases} \bigvee \{\tau(\mu) \mid \mu \leq \lambda, \ x \in supp(\mu), \tau(\mu) > 0 \} \\ 0, \text{ otherwise.} \end{cases}$$

**Theorem 3.2** Let  $(X, \tau)$  be a smooth topological space. For each  $x \in X$ , the smooth neighborhood system  $N_x^{\tau}$  satisfies the following properties:

- (1)  $N_x^{\tau}(\underline{1}) = 1$ , for each  $x \in X$ ,
- (2) if  $N_r(\lambda) > 0$  for each  $\lambda \in I^X$ , then  $x \in supp(\lambda)$ ,
- (3) if  $\lambda \leq \mu$  for each  $\lambda, \mu \in I^X$ , then  $N_x^{\tau}(\lambda) \leq N_x^{\tau}(\mu)$ ,
- (4) for each  $\lambda, \mu \in I^X$ ,

$$N_{x}^{r}(\lambda \wedge \mu) \geq N_{x}^{r}(\lambda) \wedge N_{x}^{r}(\mu)$$

(5) for each  $\lambda \in I^X$ ,

$$N_x^{r}(\lambda) \leq \bigvee \{N_x^{r}(\mu) \land (\bigwedge_{v \in Subb(\mu)} N_y^{r}(\mu)) \mid \mu \leq \lambda\}.$$

**Proof.** (1),(2) and (3) are easily proved from the definition of  $N_x^{\rm r}$ .

(4) Suppose there exist  $\lambda, \mu \in I^X$  and  $x \in X$  such that

$$N_x^{\tau}(\lambda \wedge \mu) \not\geq N_x^{\tau}(\lambda) \wedge N_x^{\tau}(\mu)$$
.

Then there exists  $t \in (0,1)$  such that

$$N_x^{\tau}(\lambda \wedge \mu) \langle t \langle N_x^{\tau}(\lambda) \wedge N_x^{\tau}(\mu).$$

Since  $N_x^t(\lambda) > t$  and  $N_x^t(\mu) > t$ , there exist  $\lambda_1, \mu_1 \in I^X$  with  $x \in supp(\lambda_1)$ ,  $x \in supp(\mu_1)$ ,  $\lambda_1 \le \lambda$  and  $\mu_1 \le \mu$  such that  $t(\lambda_1) > t$ ,  $t(\mu_1) > t$ . It implies  $x \in supp(\lambda_1 \land \mu_1)$ ,  $\lambda_1 \land \mu_1 \le \lambda \land \mu$  such that  $t(\lambda_1 \land \mu_1) \ge t(\lambda_1) \land t(\mu_1) > t$ . So,  $N_x^t(\lambda \land \mu) > t$ . It is a contradiction.

(5) Suppose

$$N_{x}^{\tau}(\lambda) > t > \bigvee \{N_{x}^{\tau}(\mu) \land (\bigwedge_{y \in Subb(\mu)} N_{y}^{\tau}(\mu)) \mid \mu \leq \lambda\}.$$

Since  $N_x^{\tau}(\lambda) > t$ , there exists  $\mu \in I^X$  with  $x \in supp(\mu)$  and  $\mu \leq \lambda$  such that  $\tau(\mu) > t$ . Furthermore,  $y \in supp(\mu)$  and  $\mu \leq \mu$  such that

$$\bigwedge_{v \in supp(\mu)} N_{y}^{\tau}(\mu) \geq \tau(\mu) \rangle t.$$

Hence,

$$\bigvee\{N_x^{\tau}(\mu) \wedge (\bigwedge_{y \in supp(\mu)} N_y^{\tau}(\mu)) \mid \mu \leq \lambda\} \rangle t.$$

It is a contradiction.

**Definition 3.3** A mapping  $N:X \rightarrow I^{I^x}$  is called a smooth neighborhood system on X iff it satisfies:

- (N1)  $N_x(\underline{1}) = 1$ , for each  $x \in X$ ,
- (N2) if  $N_x(\lambda) > 0$  for each  $\lambda \in I^X$ , then  $x \in supp(\lambda)$ ,
- (N3) if  $\lambda \leq \mu$  for each  $\lambda$ ,  $\mu \in I^X$ , then  $N_x(\lambda) \leq N_x(\mu)$ ,
- (N4) for each  $\lambda, \mu \in I^X$ ,

$$N_x(\lambda \wedge \mu) \geq N_x(\lambda) \wedge N_x(\mu)$$
,

(N5) for each  $\lambda \in I^X$ ,

$$N_x(\lambda) \le \bigvee \{N_x(\mu) \land (\bigwedge_{y \in supp(\mu)} N_y(\mu)) \mid \mu \le \lambda\}.$$

**Theorem 3.4** Let  $N: X \rightarrow I^{I^X}$  be a mapping satisfying conditions (N1)-(N4) in Definition 3.3. We define a mapping  $\tau_N: I^X \rightarrow I$  by

$$\tau_{N}(\lambda) = \begin{cases} \bigwedge_{x \in supp(\lambda)} N_{x}(\lambda) & \text{if } \lambda \neq \underline{0} \\ 1, & \text{if } \lambda = \underline{0}. \end{cases}$$

Then:

- (1)  $\tau_N$  is a smooth topology on X.
- (2) If the mapping N is a smooth neighborhood system on X, then  $N_x(\lambda) = N_x^{\tau_N}(\lambda)$ , for each  $x \in X$  and  $\lambda \in I^X$ .

**Proof** (1) (O1) It is trivial from the definition of  $\tau_N$ .

$$(O2) \tau_{N}(\lambda \wedge \mu)$$

$$= \bigwedge_{x \in supp(\lambda \wedge \mu)} N_{x}(\lambda \wedge \mu)$$

$$\geq \bigwedge_{x \in supp(\lambda \wedge \mu)} N_{x}(\lambda) \wedge N_{x}(\mu)$$

$$= \bigwedge_{x \in supp(\lambda \wedge \mu)} N_{x}(\lambda) \wedge (\bigwedge_{x \in supp(\lambda \wedge \mu)} N_{x}(\mu))$$

$$\geq \bigwedge_{x \in supp(\lambda)} N_{x}(\lambda) \wedge (\bigwedge_{x \in supp(\mu)} N_{x}(\mu))$$

$$= \tau_{N}(\lambda) \wedge \tau_{N}(\mu).$$

(O3) Let  $\{\lambda_i \mid i \in J\} \subset I^X$ .

If  $\bigvee_{i \in I} \lambda_i = 0$ , then it is obvious that

$$\tau_N(\bigvee_{i\in I}\lambda_i)=1\geq \bigwedge_{i\in I}\tau_N(\lambda_i).$$

If  $\bigvee_{i \in J} \lambda_i \neq \underline{0}$ , then there exists  $x \in supp(\bigvee_{i \in J} \lambda_i)$  which there exists  $k \in J$  such that  $x \in supp(\lambda_k)$ .

$$N_x(\bigvee_{i\in I}\lambda_i)\geq N_x(\lambda_k)\geq \bigwedge_{x\in \text{supp}(\lambda_i)}N_x(\lambda_k)=\tau_N(\lambda_k).$$

Hence

$$\tau_{N}(\bigvee_{i=j}\lambda_{i}) = \bigwedge_{x \in supp(\bigvee_{\lambda_{i}})} N_{x}(\bigvee_{i=j}\lambda_{i}) \geq \bigwedge_{i=j} \tau_{N}(\lambda_{i}).$$

Hence  $\tau_N$  is a smooth topology on X.

(2) Let N be a smooth neighborhood system on X. We have

$$\begin{split} N_x^{\tau_N}(\lambda) &= \bigvee \{\tau_N(\mu) \mid x \in supp(\mu), \quad \mu \leq \lambda \} \\ &= \bigvee \{\bigwedge_{y \in supp(\mu)} N_y(\mu) \mid x \in supp(\mu), \quad \mu \leq \lambda \} \\ &\leq N_x(\lambda). \quad (\text{since } N_x(\mu) \leq N_x(\lambda)) \end{split}$$

Hence,  $N_x^{r_N} \leq N_x$ .

Conversely, by (N5) of Definition 3.3,  $N_x(\lambda)$ 

$$= \bigvee \{ N_x(\mu) \land (\bigwedge_{y \in Subb(\mu)} N_y(\mu)) \mid x \in Subp(\mu), \ \mu \leq \lambda \}$$

$$\leq \bigvee \{ \bigwedge_{y \in \text{supp}(\mu)} N_y(\mu) \mid x \in \text{supp}(\mu), \ \mu \leq \lambda \}$$

$$= \bigvee \{ \tau_N(\mu) \mid x \in supp(\mu), \mu \leq \lambda \}$$

$$=N_x^{\tau_x}(\lambda).$$

**Theorem 3.5** Let  $(X, \tau)$  be a smooth topological space. Then  $\tau_{N'}(\lambda) \ge \tau(\lambda)$  for each  $\lambda \in I^X$ .

**Proof** If  $r(\lambda) = 0$  or  $\lambda = \underline{0}$ , it is trivial.

If  $\tau(\lambda) > 0$  and  $\lambda \neq \underline{0}$ , then there exists  $x \in X$  such that  $N_x^{\tau}(\lambda) \geq \tau(\lambda)$ . It implies

$$\tau_{N}(\lambda) = \bigwedge_{x \in Supp(\lambda)} N_{x}^{\tau}(\lambda) \geq \tau(\lambda).$$

**Theorem 3.6** Let  $(X, \tau)$  and  $(Y, \eta)$  be two smooth topological spaces. If  $f(X, \tau) \rightarrow (Y, \eta)$  is smooth continuous, then  $N^{\eta}_{f(x)}(\lambda) \leq N^{\tau}_{x}(f^{-1}(\lambda))$ 

for all  $x \in X$  and  $\lambda \in I^Y$ .

**Proof.** For any  $x \in X$  and  $\lambda \in I^Y$ , we have  $N^{\eta}_{f(x)}(\lambda) = \bigvee \{ \eta(\mu) \mid f(x) \in supp(\mu), \mu \leq \lambda \}$   $\leq \bigvee \{ \tau(f^{-1}(\mu)) \mid x \in supp(f^{-1}(\mu)), f^{-1}(\mu) \leq f^{-1}(\lambda) \}$  $\leq N^{\tau}_{\tau}(f^{-1}(\lambda)).$ 

**Example 3.7** Let  $X = \{a, b\}$  be a set and  $\mu \in I^X$  as follows:

$$\mu(a) = 0.6$$
,  $\mu(b) = 0.3$ .

(1) We define a smooth fuzzy topology

$$r(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{0, 1\} \\ \frac{1}{2}, & \text{if } \lambda = \mu \\ 0, & \text{otherwise.} \end{cases}$$

From Definition 3.1(2), we obtain  $N_a^{\mathsf{r}}, N_b^{\mathsf{r}}: I^X \to I$  as follows:

$$N_a^{\tau}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \bot, \\ \frac{1}{2}, & \text{if } \bot \neq \lambda \geq \mu \\ 0, & \text{otherwise.} \end{cases}$$

$$N_b^{\tau}(\lambda) = \begin{cases} 1, & \text{if } \lambda = \bot, \\ \frac{1}{2}, & \text{if } \bot \neq \lambda \geq \mu \\ 0, & \text{otherwise.} \end{cases}$$

From Theorem 3.4, we have

$$\tau_{N}(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{0, 1\} \\ \frac{1}{2}, & \text{if } 1 \neq \lambda \geq \mu, \\ 0, & \text{otherwise.} \end{cases}$$

Thus,  $\tau_{N'}(\lambda) \ge \tau(\lambda)$  for each  $\lambda \in I^X$ .

(2) We define  $N_a, N_b I^X \rightarrow I$  as follows:

$$N_a(\lambda) = \begin{cases} 1, & \text{if } \lambda = 1, \\ \frac{1}{2}, & \text{if } 1 \neq \lambda \geq \mu \\ 0, & \text{otherwise.} \end{cases}$$

$$N_b(\lambda) = \begin{cases} 1, & \text{if } \lambda = 1, \\ \frac{1}{3}, & \text{if } 1 \neq \lambda \geq \mu \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$\frac{1}{2} = N_a(\mu) > N_a(\mu) \land (\bigwedge_{v \in Subb(\mu)} N_v(\mu)) = \frac{1}{3},$$

it does not satisfy the condition (N5) of Definition 3.3. By Theorem 3.4, we have

$$\tau_{N}(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{0, 1\} \\ \frac{1}{3}, & \text{if } 1 \neq \lambda \geq \mu, \\ 0, & \text{otherwise.} \end{cases}$$

We obtaine  $N_a^{\tau_N}, N_b^{\tau_N}: I^X \rightarrow I$  as follows:

$$N_a^{\tau_N}(\lambda) = \begin{cases} 1, & \text{if } \lambda = 1, \\ \frac{1}{3}, & \text{if } 1 \neq \lambda \geq \mu \\ 0, & \text{otherwise.} \end{cases}$$

$$N_b^{\tau_N}(\lambda) = \begin{cases} 1, & \text{if } \lambda = 1, \\ \frac{1}{3}, & \text{if } 1 \neq \lambda \geq \mu \\ 0, & \text{otherwise.} \end{cases}$$

In general,  $N_x \neq N_x^{\tau_N}$ .

We can obtain another smooth topology from a smooth neighborhood system.

**Theorem 3.8** Let  $N:X \rightarrow I^{I^X}$  be a mapping satisfying conditions (N1)-(N4) in Definition 3.3. We define a mapping  $T_N:I^X \rightarrow I$  by

$$T_{N}(\lambda) = \begin{cases} 1 & \text{if } \lambda = \underline{0} \\ 1, & \text{if } N_{x}(\lambda) > 0 \text{ for each } x \in supp(\lambda) \\ 0 & \text{otherwise} \end{cases}$$

Then

- (1)  $T_N$  is a smooth topology on X.
- (2) If the mapping N is a smooth neighborhood system, then  $N_x(\lambda) \le N_x^{T_N}(\lambda)$ , for each  $x \in X$  and  $\lambda \in I^X$ . Furthermore,  $supp(N_x) = supp(N_x^{T_N})$ .

Proof (1) (O1) Obvious.

(O2) We show that  $T_N(\lambda_1 \wedge \lambda_2) \ge T_N(\lambda_1) \wedge T_N(\lambda_2)$ .

If  $T_N(\lambda_1) = 0$  or  $T_N(\lambda_2) = 0$ , it is trivial.

If  $T_N(\lambda_1) = 1$  and  $T_N(\lambda_2) = 1$ , for each  $x \in supp(\lambda_1 \land \lambda_2)$ ,

we have

$$N_x(\lambda_1 \wedge \lambda_2) \ge N_x(\lambda_1) \wedge N_x(\lambda_2) > 0.$$

It implies  $T_{N}(\lambda_{1} \wedge \lambda_{2}) = 1$ . (O3) We show that

$$T_N(\bigvee_{i\in F}\lambda_i) \geq \bigwedge_{i\in F}T_N(\lambda_i).$$

If  $T_N(\lambda_i) = 0$  for some  $i \in \Gamma$ , it is trivial. If  $T_N(\lambda_i) = 1$  for all  $i \in \Gamma$ , for each  $x \in supp(\bigvee_{i \in \Gamma} \lambda_i)$ , there exists  $j \in \Gamma$  with

 $x \in supp(\lambda_i)$  and  $N_x(\lambda_i) > 0$ .

So,

$$N_x(\bigvee_{i \in \Gamma} \lambda_i) \ge N_x(\lambda_i) > 0.$$
  
 $T_N(\bigvee_{i \in \Gamma} \lambda_i) = 1.$ 

(2). If  $N_x(\lambda) = 0$ , it is trivial. Let  $N_x(\lambda) > 0$ . Since, by (N5) of Definition 3.3,

$$N_x(\lambda) \leq \bigvee \{N_x(\mu) \land (\bigwedge_{y \in supp(\mu)} N_y(\mu)) \mid \mu \leq \lambda\},$$

there exists  $\mu \in I^X$  with  $\mu \le \lambda$  such that

$$N_x(\mu) \wedge (\bigwedge_{y \in supp(\mu)} N_y(\mu)) > 0.$$

Since  $\bigwedge_{y \in Subp(\mu)} N_y(\mu) > 0$ , that is, for each

$$y \in supp(\mu)$$
,  $N_y(\mu) > 0$ , then  $T_N(\mu) = 1$ .

Thus,

$$N_x^{T_N}(\lambda) = \bigvee \{T_N(\mu) \mid x \in supp(\mu), \mu \leq \lambda\} = 1.$$

Thus.

 $N_r(\lambda) \leq N_r^{T_N}(\lambda)$ , for each  $x \in X$  and  $\lambda \in I^X$ .

We will show that

$$supp(N_x) = supp(N_x^{T_N}).$$

Since

$$N_x(\lambda) \leq N_x^{T_N}(\lambda)$$
,  $supp(N_x) \subset supp(N_x^{T_N})$ .

Let  $\lambda \in supp(N_x^{T_N})$ . Then

$$0 \langle N_x^{T_N}(\lambda) = \bigvee \{ T_N(\mu) \mid x \in supp(\mu), \quad \mu \leq \lambda \}.$$

There exists  $\mu \in I^X$  with  $x \in supp(\mu)$ ,  $\mu \le \lambda$  such that  $T_N(\mu) = 1$ .

Hence  $N_x(\lambda) \ge N_x(\mu) > 0$ .

Thus  $\lambda \in supp(N_x)$ . Thus,  $supp(N_x^{T_x}) \subset supp(N_x)$ .

**Theorem 3.9** Let  $(X, \tau)$  be a smooth topological space. Then

$$T_{N'}(\lambda) \ge \tau(\lambda)$$
 for each  $\lambda \in I^X$ .

**Proof** If  $\tau(\lambda) = 0$  or  $\lambda = \underline{0}$ , it is trivial. If  $\tau(\lambda) > 0$  and  $\lambda \neq \underline{0}$ , then there exists  $x \in X$  such that  $N_x^T(\lambda) \geq \tau(\lambda)$ .

It implies  $T_{N'}(\lambda) = 1 \ge r(\lambda)$ .

**Example 3.10** Let  $X, \mu$  and  $\tau$  as in Example 3.7. By Theorem3.8, we obtain

$$T_{N'}(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{0, 1\} \\ 1, & \text{if } 1 \neq \lambda \geq \mu, \\ 0, & \text{otherwise.} \end{cases}$$

Hence  $T_{N'}(\lambda) \ge \tau(\lambda)$  for each  $\lambda \in I^X$ .

Let  $\rho \in I^X$  as follows:

$$\rho(a) = 0.5, \quad \rho(b) = 0.$$

We define  $N_a, N_b; I^X \rightarrow I$  as follows:

$$N_a(\lambda) = \left\{ \begin{array}{ll} 1, & \text{if } \lambda = \bot, \\ \\ \frac{1}{3}, & \text{if } \underline{1} \neq \lambda \geq \rho \\ \\ 0, & \text{otherwise.} \end{array} \right.$$

$$N_b(\lambda) = \begin{cases} 1, & \text{if } \lambda = 1, \\ \frac{1}{2}, & \text{if } 1 \neq \lambda \geq \rho \end{cases}$$

For each  $\rho \leq \lambda$ , since  $a \in supp(\lambda)$  and

$$N_a(\lambda) = \frac{1}{3}$$
,  $T_N(\lambda) = 1$ .

Hence, we obtain

$$T_{N}(\lambda) = \begin{cases} 1, & \text{if } \lambda \in \{\underline{0}, \underline{1}\} \\ 1, & \text{if } \underline{1} \neq \lambda \geq \rho, \\ 0, & \text{otherwise.} \end{cases}$$

Since

$$\frac{1}{2} = N_b(\rho) \rightarrow N_b(\rho) \land (\bigwedge_{y \in Supp(\rho)} N_y(\rho)) = \frac{1}{3},$$

it does not satisfy the condition (N5) of Definition3.3.

So, 
$$\frac{1}{2} = N_b(\rho) > N_b^{T_N}(\rho) = 0$$
.

In general,

$$N_x(\lambda) \not\leq N_x^{T_N}(\lambda)$$
.

### References

- [1] C. L. Chang, "Fuzzy topological spaces," J. Math. Anal. Appl. vol. 24, pp. 182–190, 1968.
- [2] K.C.Chattopadhyay, R.N.Hazra, S.K.Samanta.

- "Gradation of openness, Fuzzy topology," Fuzzy Sets and Systems vol. 49, pp. 237-242, 1992.
- [3] Mustafa Demirci, "On several types of compactness in smooth topological spaces," *Fuzzy Sets and Systems* vol. 90, pp. 83–88, 1997.
- [4] Mustafa Demirci, "Neighborhood structures of smooth topological spaces," *Fuzzy Sets and Systems* vol. 92, pp. 123-128, 1997.
- [5] M. K. El Gayyar, E. E. Kerre and A. A. Ramadan, "Almost Compactness and near Compactness in smooth topological spaces," Fuzzy Sets and Systems vol. 62, pp. 193-202, 1994.
- [6] M. K. El Gayyar, A study of fuzzy smooth structures and some applications Ph.D. thesis, Suez-Canal University, Egypt (1994).
- [7] U. Heohle, M valued sets and Sheaves over integral commutative cI-monoids, in : S. E. Rodabaugh, E. P. Klement and U. Heohle, Eds, Applications of category theory to Fuzzy subsets (Kluwer, Dordrecht, Boston, (1992)).
- [8] U. Heohle and S. E. Rodabaugh, Mathematics of Fuzzy sets: Logic, Topology, and Measure Theory, in The Handbooks of Fuzzy Sets Series, Volume 3 (1999) Kluwer Academic publishers (Dordrecht).
- [9] A. A. Ramadan, "Smooth topological spaces," Fuzzy Sets and Systems vol. 48, pp. 371-375, 1992.
- [10] A. A. Ramadan, S.N. El-Deeb, M.A. Abdel-Sattar, "On smooth topological spaces IV," *Fuzzy Sets and Systems* vol. 119, pp. 473-482, 2001.
- [11] A. Shostak, "On fuzzy topological structures," Supp. Rend. Circ. Matem. Palermo, ser II 11, pp.89-103 1985.
- [12] Mingsheng Ying, "A new approach for fuzzy topology I," *Fuzzy Sets and Systems* vol 39, pp. 302–321, 1991.
- [13] Mingsheng Ying, "On the method of neighborhood systems in fuzzy topology," Fuzzy Sets and Systems vol. 68, pp. 227-238, 1994.

# 저 자 소 개

### A.A. Ramadan

- 1979: The Dept. of Math., Faculty of Sci., Assuit Univ., (B.S)
- 1982: The Dept. of Math., Faculty of Sci., Assuit Univ., (M.S)
- 1987: The Dept. of Math., Faculty of Sci., Assuit Univ., (Ph.D)
- 1994~: Professor Dept. of Math., Faculty of Sci, Cairo Univ. Beni-Suef, Egypt.

#### Y.C.Kim

- 1982: The Dept. of Math., Faculty of Sci., Yonsei Univ., (B.S)
- 1984: The Dept. of Math., Faculty of Sci., Yonsei Univ., (M.S)
- 1991: The Dept. of Math., Faculty of Sci., Yonsei Univ., (Ph.D)
- 1991~: Associate professor Dept. of Math., Kangnung Univ.

### M.K. El-Gayyar

- 1979: The Dept. of Math., Faculty of Sci., Assuit Univ., (B.S)
- 1984: The Dept. of Math., Faculty of Sci., Assuit Univ., (M.S.)
- 1991: The Dept. of Math., Faculty of Eng., Suez-Canal Univ., Port Said, Egypt (Ph.D)