Estimation of Surface Roughness using Neural Network in Polishing Operation of Mold and Die

금형연마작업에서 신경망을 이용한 표면거칠기 추정

  • Published : 2002.04.01

Abstract

This paper presents a neural network approach to estimate the surface roughness by considering the relationship between the polishing operation parameters and the surface roughness. The neural network model predicts the post-machining surface roughness by using several factors such as pre-machining surface roughness, pressure, feed rate, spindle speed, and the number of polishing as inputs. In this paper, the several neural network models are implemented to estimate the surface roughness by using actual experimental data. The experimental results show that the neural network approach is more appropriate to represent the polishing characteristics of mold and die compared with the results obtained by the approach using exponential function.

Keywords

References

  1. 안중환, 김화영, 신운봉, 정해도, 조규갑, '최적금형연마 가공을 위한 센서 정보 통합 전문가 시스템 개발,' 한국공작기계학회지, 제 9 권 제 1 호, pp. 128-135, 2000
  2. 이두찬, 정해도, 안중환, 三好隆志, '자동금형연마의 최적조건선정 전문가시스템 개발,' 한국정밀공학회지, 제 14 권 제 10 호, pp. 58-67, 1997
  3. 조규갑, 강용우, '신경망과 유전알고리즘을 이용한 금형연마조건의 최적선정,' 대한산업공학회 추계학술대회 논문집, 2000
  4. 이태문, 정해도, 황찬해, 조규갑, '금형의 자동연마작업지원 전문가시스템의 개발,' 한국정밀공학회지, 제 16 권 제 7 호, pp. 73-84, 1999
  5. 이민석, '금형연마작업을 위한 5축 CAM 시스템 개발,' POSTECH 석사학위논문, 1994
  6. Sasaki, T., Miyoshi, T., Saito, K., and Kaiohoi, O., 'Knowledge Acquisition and Automation of Polishing Operation for Injection Mold(Report No.1):Hand Polishing Properties of a Skilled Machinist,' Journal of the Japan Society for Precision Engineering, Vol. 57, No. 3, pp. 497-503, 1991(in Japanese) https://doi.org/10.2493/jjspe.57.497
  7. 곽재섭, 송지복, '신경회로망을 이용한 연삭가공의 트러블 인식,' 한국정밀공학회지, 제 15 권 제 2 호, pp. 162-170
  8. Russell, S., and Norvig, P., Artificial Intelligence, Prentice Hall Press, 1995
  9. Fausett, L., Fundamentals of Neural Networks, Prentice Hall Press, 1994