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Analysis of Water Hammering in a Pipe Having an Accumulator

Yong Kweon Suh®
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Abstract

This paper addresses characteristics of compressible flow dynamics inside a pipe with an
accumulator and an inlet orifice. It also presents a simple but stable numerical method asso-
ciated with the accumulator-orifice calculation. In particular, a focus is given to developing a
method of finding an optimum design of the accumulator-orifice system (i.e., the accumulator
size and the throttle resistance) that gives the most effective dissipation of the water—-ham-
mering problem. It is found that there exists indeed an optimum set of parameter values for

the most effective dissipation of the wave energy.
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Nomenclature

. sound velocity, V 8/p [m/s]

. sectional area of the valve throttle (at

arhitrary time) {m’]

. sectional area of the valve throttle (at

initial time) [m?]

. sectional area of the pipe [m’]

. characteristic value,

inlet of the accumulator (Fig. 2)

. arbitrary constants

© velocity coefficient of the valve
. inner diameter of the pipe [m]
. arbitrary constant

. friction coefficient of the pipe

. gravitational acceleration [m/s’]
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© water depth at the inlet of the

pipe [m]

: number of grids in the x-space

arbitrary constants

: pipe length [m]
. length of the pipe connecting the

accumulator [m]

1 constants
: pressure [Pal

. spatio-temporal average of

|1 = /b (equation (17b))

. P, When accumulator is absent

. pressure at the pipe outlet

(upstream of the valve) [Pa]

. pressure at the quiescent state

[Pa]

. time [s]
: valve-closing time [s]

: final time of computation [s]
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u : flow velocity [m/s]

Ugs . flow velocity at the initial steady
state [m/s]

Ugy . spatio-temporal average of | /2|

(equation (17a))

U oo ! %, when accumulator is absent
Uin ! # at the inlet of the pipe [m/s]
x : spatial coordinate along the
downstream direction [m]
14 : volume [m’]
Greek symbols
B : modulus of the fluid elasticity [Pa]
¢  head loss coefficient of the throttle
for the accumulator
0 : fluid density [kg/m°]

! relative opening of the valve
(equation (16))

St . time step for the accumulator
computation [s]
At . time step for the pipe computation [s]
Ax . grid space [m]
Subscripts
1, 2, 3 ! indicate positions at the upstream,

downstream, and toward the
accumulator

ac . accumulator
ac() . initial state of the gas in the
accumulator

i, N, W : grid points in the space-time space

1. Introduction

Fluid flows inside a duct present a serious
problem called water hammering. It occurs when
the flow is suddenly blocked by e.g. a valve
accompanying a pressure wave. The strength
and velocity of the pressure wave is a function

of the valve-closing time, the fluid compressi-
bility, elasticity of the duct, and dynamic char-
acteristics of facilities attached to the duct. It
is uttermost important to avoid the water ham-
mering in designing a duct system because,
when the water hammering occurs, the duct
system not only generates noise but also causes
fatigue failure or malfunction of attached fa-
cilities.

Yum et al.
mentally, on the separation of fluid column

R studied, numerically and experi-

caused by water hammering. Kang et al® an-
alysed performance of a piping system having
an air chamber and its effect on the water
hammering. Han et al.®’ conducted an experi-
mental study on the water-hammering problem
occurring in architectural piping systems by
using a 10 m high water tank and a 32m long

@ reported the numerical re-

pipe. Lee and Kim
sults on the relationship between the water
hammering and the pipe vibration.

In this paper we focus on a pipe system
having an accumulator designated to reduce
the water hammering. Since the accumulator is
connected to the pipe in parallel, it does not
affect the fluid flow at steady state. When the
water hammering occurs, however, the pres-
sure in the pipe locally fluctuates due to the
propagation of the pressure wave. When the
local pressure at the junctional point of the
accumulator and the pipe is higher than the
time average, the fluid flows from the ac-
cumulator into the pipe and thus increase of
the line pressure is resisted. On the contrary,
when the local pressure is lower than the time
average, the fluid-flow direction is reversed
and thus decrease of the line pressure is sim-—
ilarly compensated. On the other hand, conser-
vation of energy dictates that without a damp-
ing mechanism the wave energy is not dis~
sipated. The accumulator is indeed supposed to
reduce the abrupt increase or decrease of the
line pressure but not as a damper. Therefore if
the natural damping effect given by e.g. the
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pipe friction is not sufficient enough, additional
dampers such as a throttle must be built in an
appropriate place. The key engineering issue in
this case is selecting the optimum size of the
accumulator and the optimum throttle resis-
tance.

The optimization problem raised in the above
necessitates the numerical analysis, usually one-
dimensional, of the compressible flow inside
the pipe. Among others, the method of char-
acteristics (e.g. Wylie and Streeter™) is the
most frequently used as the numerical method.
On the other hand, the pipe friction is simply
modelled by a friction law such as the Darcy’s
law. To account for the dynamical behaviour
of the flows, more rigorous laws allow the
friction coefficient as a function of the fre-
quency of the flow oscillation as proposed by
Zielke,® Trikha,” Suzuki et al,” and Schohl®”
but in this study we simply take the friction
coefficient as a constant.

The numerical method for the pipe system
with accumulators is given by Wrylie and
Streeter,” but it is an iterative method and
sometimes requires a very small time step. In
this study, a more convenient method is pro-
posed. This paper also addresses the main rea-
son why the conventional method requires a
small time step.

The numerical method is then applied to a
specific water-hammering problem, where one
seeks an optimum accumulator size and an op-
timum orifice size.

2. Numerncal method

For the compressible fluid flowing in a
straight pipe, the one-dimensional governing
equations are

8 p0u dp __
a1‘4—,6’(.;,%-9-1(6% 0 (1)

Ou  10p , Ou , fulul _
8t+pax+u8x+ 2D = (2)

The method of characteristics is employed
here to solve the above set of equations. Since
the method is well described in the text of
Wylie and Streeter,(S) only a brief description
will be given here. Multiplying the constants
*a/B to equation (2) and add the result to (1)
yields

du adp , fulul _
dt + ] dt+ 2D 0 (3)
% =tatu (4)

where the total derivative d/dt is defined as

d _ 0 did
dt at - dt ox

To discretize equation (3), the x-space is di-
vided into (/—1) segments, and we take the
variables % and p defined only at the grid po-
ints as unknown. The time step is denoted as
4dt, and we take the present time as =0 and
the future time as t= At for convenience (Fig.
1). Applying the Euler’'s method and discre-
tizing equation (3) gives the following.

uN+‘%pN=CW Euw"‘%pw"—f‘uwzl%‘l'dt (5)

Suglug|
uN-—%pN=CEEuE—%pE-————§D—E—At (6)

Here the subscripts designate both the spatial
and temporal grid points (Fig. 1), and the con-

L

Fig. 1 Schematic illustration of implication
given by the equations (3) and (4).
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stants Cy and Cg are evaluated by using the
temporally known variables. Solving equations
(5) and (6) for uy and py provides

un="4 (Cy+Cx) o

bn = ‘2% (Cw—Cpg)
Resultantly equation (4) is used in obtaining
variables at the two points W and E. However
since the two points in general do not coincide
with the grid points {—1 and ¢+1, respectively,
evaluation of Cy and Cp necessitates the in-
terpolation. When the points exactly coincide
with the grid points, then the numerical results
are the most accurate; however, this happens
only for the special case uw=0. It is also well
known that if either of the two points situate
outside of the space between i—1 and 7+1 the
numerical instability occurs.® In view of these

points we take the time step A¢ as follows.

Ax

4t = a+ 2! max

so that the numerical method becomes both
stable accurate.

Setting the boundary conditions for the dis-
crete equation (7) will be addressed in the next
section where the method is applied to the
actual case.

3. Flow in the pipe with an accumulator

Fig. 2 describes a pipe system containing an
accumulator to be numerically solved. As the
boundary condition at the upstream end, the
pressure there is given by the static pressure,
which is constant:

Py = ogHrp

The flow velocity #y at the boundary can be
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accumulator
water
tank
D valve
i C =
pu— X
.
- |

Fig. 2 A water pipe, attached to a tank, with
an accumulator and a valve.

obtained from equation (6).

To set the boundary conditions at the down-
stream end, we use the relationship between
the velocity and the pressure drop across the
valve. Let the pressure in front of the valve
by, and we can write the formula for uy the

velocity at the point as follows.

uy=KNpw, K. =——ﬁ’f”\f% ®

where the pressure downstream of the valve is
set as 0, i.e. the atmospheric pressure. Com-
bining this and equation (5), we obtain the for-

mula for py as

-1

Ve ) g i ]

The velocity in front of the valve is then given
by substituting the result into (5).

To obtain boundary conditions at the point
where the accumulator is connected (i.e. point
C in Fig. 2), we write the relevant equations

(9

as follows.
U3 = UL Uy (10)
Dac Vanc = Kac = pacO VancO an
du3

OLo Tt = b= b= touslugl - (12)
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dV,

== Ayus (13)

Equation (10) corresponds to the continuity equa-
tion for the space surrounding the point C.
Here, the diameter of the connecting pipe is
assumed to be the same as that of the main
pipe. Equation (11) represents the compression/
expansion process of the gas in the accu-
mulator. The exponent z varies usually 1~1.4.
Equation (12) comes from the momentum prin-
ciple for the fluid in the connecting pipe, the
left-hand side representing the inertial effect of
the fluid. Here, L, denotes the length of the

connecting pipe and py the pressure at the

point C. Further, p,. is the pressure down-

stream of the throttle, being assumed to be the
same as the gas pressure. Equation (13) repre-
sents the change of the gas volume in the ac-
cumulator caused by inflow/outflow of the fluid
through the connecting pipe. On the other hand,
in the main pipe, equation (5) applies upstream

of the point C (here uy becomes w,), and equa-
tion (6) applies downstream of C (here uy be-
comes #,). Subtracting one from the other and

applying equation (10) provides

u3=CW—CE~-2—5-pN (14)

Thus four equations (11)~(14) determine four

unknowns py, 3, P, and V,.. The time de-

rivative d/dt used in equations (12) and (13) is
of course different from that used in (3) and
(4). The former indicates simply a time deri-
vative at a fixed spatial point. We can elimi-
nate p,. and py in (12) by using the equa-

tions (11) and (14) to obtain

dU3 Kac
& e ”

oL A(Cy—Co—uy)

(15)
__]'2‘ Sousluszl

Now the governing equations are simply (13)

and (15), and the number of unknowns are

also reduced to two. Wylie and Streeter"™ pro-

pose to neglect L, making the left-hand side
of (15) zero, discretize (13) by the Crank-Ni-
colson method and finally solve the combined
nonlinear equation by using an iterative method.

In order to develop a simpler numerical al-
gorithm, the explicit Euler method has been
applied to the equations (13) and (15) without

neglecting L,.. In this case the time step &t
must be taken smaller than the time step A4¢
for the main pipe calculation. In another words,
when the main-pipe computation for one time
step is completed thus supplying the constants
Cw and Cg, one must integrate equations (13)
and (15) for the interval ¢~¢-+ 4t with the
time step 8f= Ad¢/m for an integer m. It has
been found from the numerical experiments
that as L, becomes smaller m must be in-
creased due to the numerical instability.

The primary reason why m must be large
for small L, (thus requiring a longer computer
time) can be clarified from the analysis to the
equations (15) and (13). If. for a sufficiently
small value of L,., the initial condition is ap-
plied such that the right-hand side of (15) is
not zero, u3 undergoes a rapid change from the
start to make the right-hand side zero. In this
case the time scale is proportional to L,..
Therefore due to this rapid behavior the time
step 8¢ must be taken small for the numerical
stability. On the other hand, during this pro-
cess the change of V,. is very small, because

as seen from equation (13) the change of V.
is caused by the integration of w3 for such a

very short time-interval. After the initial abrupt
change of w3, the right-hand side of (15) be-

comes almost 0, and V, (and thus w#3) slowly

changes by the equation (13).
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Assuming that the initial rapid change of u3
of the fluid in the main pipe is negligibly ef-
fective on the dynamical features and the num-
erical stability of the main pipe, we propose a
new algorithm for the special case of L, =0
as follows. First w3 is decided from the re-

quirement that the right-hand side of (15) be
zero; we simply use the well known formula
for finding the roots of the quadratic equation.
Then this result is substituted into (13) to ob-
tain a new V,.. Here, V,. in equation (15) is
assumed to be known (The validity of the as-
sumption is illustrated previously). It has been
found that for L,.=0 even m=1 gives stable
solutions. Otherwise one fails to obtain stable
solutions if one follows a procedure in which,

for instance, firstly p. is given from (11) with
the initial values of V,. and py fixed, secondly
u3 from (12) with the right-hand side set zero,

and finally V,. and py from (13) and (14).

The water hammering occurs when the valve
at the end of the pipe is suddenly closed. The
strength of the water hammering depends on
the closing time. In this study A,(#) the sec-
tional area of the valve throttle varies in time
as follows (Wylie and Streeter).

Ag=A,r(t), t(t)=Q0Q—¢t/t)E 16

For t>t,, we set r=0.

We need intial values of the flow velocity
and pressure. The initial conditions are given
from the steady state where the fluid steadily
flows and the pressure is not changed at any
place within the pipe. At the steady state, the
pressure distribution is given by setting the
terms d/0¢ zero in (1) and (2), eliminating
du/dx from both equations, and assuming
|| <€|a| and #=const. The velocity is given
by substituting the pressure at x=L, into

equation (8). The results are

b= ogHp
" 1+ foL,K%/2D
u= KvOV pend = uOs

2
p= ngR“‘%“x

where, the constant K,y corresponds to the value
of K, at the instant when the valve starts to

open.
4, Numernical results and discussions

First of all, to check the wvalidity of the
numerical algorithm, the code is applied to the
model problem set by Wylie and Streeter™;
a=1200m, p=1000kg/m’>, D=05m, Hgp=150
m, L,=600m, f=0.018, E=15 A,c,=0.009
m’, t,=2.1s. For this model case we set I=51

and m=1 (all the following results are obtained
with m=1). In this paper the SI unit is em-
ployed. Fig. 3 shows the temporal change of
uy, and peq obtained from the present code
and given by Wylie and Streeter™ (symbols). It
reveals that the two results completely coincide
with each other. In this case the nonlinear
terms, except the friction term, in (1) and (2)

Fig. 3 Numerical results of #;,, the inlet velo-

city, and p.q, the pressure at the pipe

end, obtained for the case without the

accumulator. Symbols indicate the data

given by Wylie and Streeter.”
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are neglected; but including those terms in the
calculations gives no appreciable difference. All
the numerical results presented in the following
are obtained with the nonlinear terms included.
The numerical results are also almost invariant
even if I is increased to 201.

The most significant parameters associated
with the control of the water hammering for
the case without the accumulator are the pipe
length L, and the valve-closing time f.; the

pipe diameter is set constant because it plays
as a reference length. Fig. 4 shows the dy-
namical behavior of %, and peq for the case
without the accumulator upon variation of the
two parameters. For the pipe length 600 m set
constant, the smaller f, results in a larger wave
energy, Figs. 4 (a) and (b). Therefore to reduce
the water hammering effect, the valve must be
closed slowly. However the valve-closing time
and the water hammering are related to the
pipe length. Figs. 4 (¢) and (d) show the num-

(a) L,=600m, £.=0.02 s

Py 10°

0 L
AE S

(¢) L,=2400m, ¢,=0.02s

erical results for the case the pipe length being
increased four times but the valve-closing times
unchanged. It is seen that no appreciable dif-

ference exists between large and small £.. In

fact it is effective when ¢, is set larger than

4s. These results also confirm the well known
linear theory that the period of wave of the
water hammering is proportional to the pipe
length.

We now turn to the case with the accumu-
lator. The gas in the accumulator is assumed
to undergo an isothermal process so that the
constant # is simply set 1. If the accumulator
is attached to the pipe line the water hammer-
ing can be significantly reduced. To quantify
such effect we define a spatio-temporal aver-
age of variables after the valve is closed as
follows.

U
Ups

dxdt (17a)

Ugy =

te AL,
o= )

(b) L,=600m, t.=21s

4 -6
Pens* 10
3
2
1
OFT
. \ A
-2 Y,
1 1 L J
0 5 10 15 20

(d) L,=2400m, {,=2.1s

Fig. 4 Transient behavior of u, and peqg for different sets of L, and £, for the case without the

accumulator.
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S W L P2
Poo = L,(t.—1t.) ft( fo 1 pm’dxdt (17b)

where {,=50s. In the mean time, as discussed

previously, the strength of the compressive wave
depends on the pipe length and the valve-clos-
ing time, aside from the accumulator and the
inlet orifice size. Therefore to appreciate the
pure existence of the accumulator we introduce

the ratios 2,/ uzp and pa,/Pavy, Where w4, and

Dany are values of u,, and p,, given from equa-
tions (17a) and (17b) for the case without the
accumulator. These quantities thus represent the
relative strength of the compressive wave for
the case with accumulator based on the case
without the accumulator. Hereinafter ©,,/u,,9 is
called ‘relative magnitude of the velocity fluc-
tuation’ and p,,/Pup ‘relative magnitude of the
pressure fluctuation’.

Fig. 5 shows contour plots of log (#a, /%)

in the parameter space (log V., log{) for 4

RS B ]

log &
w

log §

(c) L,=1200m

pipe lengths. All the parameter values except
Ve, § and L, are as given at the beginning
of this section, and the number of the grid
points I increases from 101 with increase of
L,. The accumulator is situated at the mid

point of the pipe. We can see from this figure
that there exists a parameter set which gives
the least magnitude of log (#,,/%,,). Shown in

Table 1 are the values of V,. and ¢ which pro-

Table 1 Optimum values of V,. and { re-
sulting in minimum of u,, /%, for

D=05m; also shown are values of
Daw/ Pawy at the corresponding para-

meter set.

L,[m] | 300 600 1200 | 2400
Vo Im]| 25 35 5.6 11
¢ 70000 | 16000 | 3200 | 1000
Uaw U | 14% | 24% | 40% | 87%
Pa/baw | 09% | 15% | 37% | 89%

log C
N w » wn

-

0
logV,_
(b) L,=600m
6
5F
4 F
e
El
2F
1F
ok
logV,_
(d) L,=2400m

Fig. 5 Contour plots of log(z,,/#.y0) in the parameter space (log V., log&) for 4 pipe lengths.
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vide the least magnitude of log (e, /2¢,) and
the corresponding value of #,,/#qg in %. It is

seen that the presence of the accumulator re-
duces the relative magnitude of the velocity
fluctuation up to 1.4~87% of that without the
accumulator.

The optimum values of V,. and ¢ should be
determined of course by considering the rela-
tive magnitude of the pressure fluctuation. Fig.
6 shows contour plots of log(p., /Pae) in the
parameter space (log V., log&) for 4 pipe
lengths. Except for the case L,=300m, the
relative magnitude of the pressure fluctuation
consistently decreases as V,. is increased. The
numerical values of P /Pao shown in Table 1
are the corresponding ones when /Uy is

minimum.

We now discuss the effect of the throttle
resistance ¢ in a physical view point. When ¢
is 0, the magnitude of the velocity and pres-

log €

log &

(¢) L,=1200m

sure fluctuation cannot be reduced because it
corresponds to the case without a damper. It is
attributed to this reason that in Figs. 5 and 6,
when ¢ is below a certain value, the fluctua-
tion increases as ¢ decreases. On the other
hand, when ¢ is too large, it corresponds to
the case without an accumulator, and thus one
cannot expect the damping effect.

Next, discussion is given to the effect of V,.
which represents the accumulator size. It is
clear that as V,. tends to 0, it approaches to
the case without an accumulator. It is attri-
buted to this reason that in Figs. 5 and 6, ex-
cept for L,=300m, the fluctuation increases as
V. is decreased. When V. is too large, D,
remains almost constant and the accumulator
plays a role as a source/sink of fluid when the
line pressure is below/above p,.. Then one may

judge that it can reduce the pressure fluctu-
ation. However the velocity fluctuation cannot
be decreased. The initial pressure in the accu-

log €

- ) 1
log V,.
(b) L,=600m
6
02— ]
SE B
“ (
o 4
g3r 0. :< <
2F w
} 204
1k ]
I e
log V.

(d) L,=2400m

Fig. 6 Contour plots of log (P /Pue) in the parameter space (log V., log{) for 4 pipe lengths.



28 Yong Kweon Suh

mulator is the same as that at the point C in
Fig. 2. After the valve is closed the pressure
at C becomes larger than the initial value. On
the contrary, the pressure in the accumulator
remains almost constant and keeps its initial
value since the gas volume is large. Then the
fluid in the reservoir flows into the accumu-
lator through the main and connecting pipes
almost steadily. It is attributed to this fact that
in Fig. 6 the pressure fluctuation decreases as

V. is increased whereas in Fig. 5 the velocity
fluctuation does not follow the same trend.

Fig. 7 shows the effect of various sets of
parameter values of the accumulator on the
transient behavior of #y, and pey for L,=600
m; (a) is for the case without the accumulator,

(b) for the case when V,. and ¢ are selected
as optimum values, (c¢) for the case when V.

is set very large, and (d) for the case when ¢

3
6
2 P " 10
1
T ul"

O %/
-1
_2 P 1 P | FE B T T |

0 5 10 15 20

(¢) V=35, £=10000

is set small, In (b} the fluctuations almost com-
pletely disappeared at f=4s. For a large V.,
Fig. 7 (c), the pressure becomes very soon con-
stant, but w%;, remains a positive value. The
reason is attributed to the fact as explained
previously.

When the value of V. is slightly decreased,
ui, fluctuates significantly around 0, and this
is due to the effect of the fluid inertia in the

pipe upstream of the accumulator. When V. is

set as optimum and & is set small enough, Fig.
7 (d), the magnitude and the period of the u,

fluctuation in particular increase. The pressure
fluctuation however is not so large. This cir-
cumstance is similar to the case in which the
elasticity of the pipe material is relatively small;
that is, the existence of the accumulator con-
taining a gas provides flexibility to the pipe

3r
1
u

. n

oft {7
-1F
J) SN EPEEE R -]
0 5 10 15 20

(@ V,.=35 §{=10

Fig. 7 Effect of various sets of parameter values of the accumulator on the transient behavior of

Ui and Peng-
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system on the whole and the direct connection
of the accumulator, ie. lower ¢ value, aug-
ments such effect. Therefore use of a inlet
orifice with a suitable resistance is mandatory
for optimum control of the water hammering.
To confirm such similarity, the case with
lower sound velocity (i.e. softer pipe material)
without the accumulator is numerically solved
at L,=600m, t,=21s and a=200m/s. Fig. 8

shows the results. It is seen that in overall the
amplitude and period of the velocity and pres-
sure fluctuations are in the same order as those
of Fig. 7(d).

Turning our attention to Table 1, we can
see that as the pipe is longer the accumulator
as a damper is less effective. This table also
provides the optimum accumulator size for a
given parameter set. Further it indicates that
as the pipe is longer the optimum size of the
accumulator becomes larger and the optimum
throttle resistance is smaller.

In addition, it must be stressed that the
present results are obtained only for the pipe
inner diameter D=05m. For a smaller pipe
diameter it may be intuitively conjectured that
an optimum size of the accumulator should be
smaller, but this must be confirmed from num-
erical works for smaller diameters, which is re-
mained as future study. Applying a frequency-
dependent friction coefficient to the water ham-
mering problem is also an interesting topic.

Po*10°

Fig. 8 Numerical result for a=200m/s for the
case without the accumulator at L,=
600 m.

5. Conclusions

Proposed in this study is a simple explicit
Euler method which can resolve the dynamical
behavior of flows inside a pipe accompanying a
water hammering phenomenon. This study also
clarified the relevant reason for the proposed
method.

The proposed method is then applied to the
water hammering problem of a 0.5 m-diameter
pipe system. It is shown that an optimum set
of accumulator size and the inlet-orifice re-
sistance exist, which is the most effective in
damping the compressive wave.

The numerical method proposed in this study
can be applied to various engineering areas,
which use pipe systems to transport fluids,
namely power plants, urban water supply, and
fluid powers.
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