초록
사용자는 원하는 자료를 검색하기 위해서 각 위치에 대한 정보를 저장하고 있는 검색엔진을 이용하는 경우가 대부분이다. 하지만 자료의 양이 방대해 짐에 따라 사용자에게 실제로 필요한 정보가 아닐 경우가 많이 발생한다. 본 논문에서는 이러한 문제를 해결할 수 있는 개인형 릴 인터페이스 에이전트 시스템인 7f 가이드를 제안하였다. 웹 가이드는 사용자의 행동과 에이전트의 방문을 키워드를 중심으로 각각의 사례로 저장하는 사례기반 학습 방법을 이용, 특징 개인 사용자가 웹 상에서 검색하고자 하는 자료를 입력받은 후부터 사용자의 방문 행동을 학습하여 보다 빠른 시간 내에 원하고자 하는 자료를 검색할 수 있도록 도와주는 에이전트 시스템이다.
Users usually search for the required information via search engines which contain locations of the information. However. as the amount of data gets large, the result of the search is often not the information that users actually want. In this paper a web guide is proposed in order to resolve this problem. The web guide uses case-based learning method which stores and utilizes cases based on the keywords of user's action and agent's visit. The proposed agent system learns the user's visiting actions following the input of the data to be searched, and then helps rapid searches of the data wanted.