References
- Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval, Addison Wesley, 1999
- Fakes, W. B. and Baeza-Yates, Ines, Information Retrieval. Data Structures and AIgorithms (eds.), Prentice Hall, 1992
- Ho, T. B. and Funakoshi K., 'Information retrieval usingrough sets', Journal of Japanese Society for ArtificialIntelligence, vol. 13, no. 3, pp. 424-433, 1998
- Lebart, L., Salem, A., and Berry, L., Exploring Textual Data, Kluwer Academic Publishers, 1998
- Lin, T. Y. and Cercone, N., Rough Sets and Data Mining.,Analysis of Imprecise Data(eds.), Kluwer Academic Publishers, 1997
- Manning, C. D. and Schutze, H., Foundations of Statistical Natural Language Processing, The MIT Press, 1999
- Pawlak, Z., Rough sets: Theoretical Aspects of Reasoningabout Data, Kluwer Academic Publishers, 1991
- Polkowski, L. and Skowron, A., Rough Sets in Knowledge Discovery 2. Applications, Case Studies and Software Systems(eds.), Physica-Verlag, 1998
- Raghavan, V. V. and Sharma, R.S., A Framework and a Prototype for Intelligent Organization of Information,The Canadian Journal of Information Science, vol. 11, pp.88-101, 1986
- Salton, G. and Buckley, C., Term-Weighting approachesin automatic text retrieval, Information Processing &Management, vol. 4, no. 5, pp. 513-523, 1998
- Skowron, A. and Stepaniuk, J., Generalized approximation spaces, The 3rd International Workshop on Rough Sets and Soft Computing, pp. 156-163, 1994
- Slowinski, R. and Vanderpooten, D., Similarity Relation asa Basis for Rough Approximations, Advances in MachineIntelligence and Soft Computing, P. Wang (ed.), vol. 4,pp. 17-33, 1997
- Srinrvasan, P., The importance of rough approximationsfor information retrieval, International Journal of Man-Machine Studies, vol. 34, no. 5, pp. 657-671, 1991 https://doi.org/10.1016/0020-7373(91)90017-2
- Willet, P., Recent trends in hierarchical document clustering: A critical review, Information Processing and Management, pp. 577-597, 1988 https://doi.org/10.1016/0306-4573(88)90027-1