Bradyrhizobium japonicum의 저온 전처리에 의한 환경스트레스 내성 증진에 대한 연구

The Effect of Cold-adaptation on Stress Responses and Identification of a Cold Shock Gene, capA in Bradyrhizobium japonicum

  • 유지철 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 노재상 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 오은택 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터) ;
  • 소재성 (인하대학교 공과대학 생물공학과, 초정밀 생물분리연구센터)
  • 발행 : 2002.03.01

초록

Bradyrhizobium japonicum 은 콩과 식물의 뿌리에 감염하여 뿌리흑을 형성 질소를 고정하는 독특한 능력을 갖는 토양 세균이며 미생물 비료제로 사용되고 있다. 본 연구에서는 저온에서 전처리한 B . japonicum 균주를 여러 가지 환경스트레스 조건에 노출하였을 때 생균수의 변화를 확인하였다. 저온 전처리는 16시간 동안 $4^{\circ}C$의 조건을 유지했다. 다양한 스트레스(알콜, 과산화수소, 고온, 건조)에 노출하였을 때, 저온 전처리한 것이 그렇지 않는 것보다 10~1,000배 정도 높은 생균수를 유지하였다. 이러한 내성중진 현상에 전처리 동안 새로운 단백질 합성이 수반되는 것을 단백질 합성 저해제 인 chloramphenicol을 전처리 과정에 포함하여 확인하였다. 저온 스트레스 내성에 관여하는 유전자를 B. japonicum genome 으로부터 중폭하였고 염기서열 분석을 실시하였다. 실험에서 확인된 B . japonicum의 CSP (Cold shock protein) 단백질의 부분적 아미노산 서열은 이미 확인된 다른 균주의 Csp 단백질과 유사함을 확인하였다.

Bradyrhizobium japonicum is a soil bacterium with a unique ability to infect the roots of leguminous plants and establish a nitrogen-fixing symbiosis, which has been used as a microbial manure. In this study, we examined the stress response after pretreatment of cells with cold temperature. When pre-treated with cold temperature ($4^{\circ}C$) for 16 hr, B. japonicum increased the viability in subsequent stress-conditions such as alcohol, $H_2O_2$, heat, and dehydration. For cold adpatation, cultured B. japonicum was exposed to $4^{\circ}C$. Upon subsequent exposure to various conditions, the number of adapted cells pretreated by cold adaptation was 10-1000 fold higher than that of non-adaptated ones. It appeared de novo protein synthesis occurred during adaptation, because a protein synthesis inhibitor, chloramphenicol abolished the increased stress tolerance. By using a degenerate PCR primer set, a csp homolog was amplified from B. japonicum genome and sequenced. The deduced partial amino acid sequence of the putative Csp (Cold shock protein) shares a significant similarity with known Csp proteins of other bacteria.

키워드

참고문헌

  1. Appl. Environ. Microbiol. v.47 Preservation of Rhizobium viability and symbiotic infectivity by suspension in water Crist, D.K;R. Wyza;K.K. Mills;W.D. Bauer;W.R. Evans
  2. FEMS Microbiol. Ecol. v.32 Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. Drouin, P.;D. Prevost;H. Antoun
  3. FEMS Microbiol. Lett. v.178 Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrohilic bacterium Shewanella biolacea strain DSS12 Fujii, S.;K. Nakasone;K. Horikoshi https://doi.org/10.1111/j.1574-6968.1999.tb13767.x
  4. Proc. Natl. Acad. USA. v.87 Major cold shock protein of Esherichia coli Goldstein, J.S. Pollitt;M. Inouye https://doi.org/10.1073/pnas.87.1.283
  5. J. Bacteriol. v.178 Cold shock stress-induced proteins in Bacillus subtilis Graumann, P.;K. Schroder;R. Schmid;M.A. Marahiel https://doi.org/10.1128/jb.178.15.4611-4619.1996
  6. Appl. Environ. Microbiol. v.60 Starvation-induced stress resistance Lactococcus lactis subsp. lactis IL 1403 Hartke, A.;S. Bouche;X. Gansel;P. Boutibonnes;Y. Auffray
  7. Antonie van Leeuwenhoek v.77 Adaptive response to cold temperatures and characterization of cspA in Salmonella typhimurium LT2 Horton, A. J.;K.M. Hak;R.J. Steffan;J.W. Foster;A. K. Bej https://doi.org/10.1023/A:1002055719798
  8. Curr. Microbiol. v.28 Temperature-dependent survival of isolates of Thiobacillus ferrooxidans Hubert, W.A.;G.D. Ferroni;L.G. Leuduc https://doi.org/10.1007/BF01571062
  9. Curr. Microbiol. v.35 Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance Kim, W.S.;N.W. Dunn https://doi.org/10.1007/s002849900212
  10. Cryobiol. v.37 Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis Kim, W.W.;N. Khunajkr;N.W. Dunn https://doi.org/10.1006/cryo.1998.2104
  11. Cryobiol. v.32 Cryotolerance and cold adaptation in Lactococcus lactis subsp. lactis IL1403 Panoff, J.M.;B.T. Vongs;J.M. Laplace;A. Hartke;P. Boutibonnes;W. Auffray https://doi.org/10.1006/cryo.1995.1053
  12. Cryobiol. v.36 Cold stress responses in mesophilic bacteria Panoff, J.M.;B. Thammavongs;M. Gueguen;P. Boutibonnes https://doi.org/10.1006/cryo.1997.2069
  13. Molecular Cloning: A Laboratory Manual(3rd ed.) Sambrook, J.;E.F. Laboratory;Fritsch;T. Maniatis
  14. Mol. Plant-Microbe Interact. v.4 A lipopolysaccharide mutant of Bradyrhizobium japonicum that nucouples polysaccharides from bacterial differentiation Stacey, G;J.-S. So;L.E. Roth;S.K.B. Lakshmi;R.W. Carlson https://doi.org/10.1094/MPMI-4-332
  15. Lett. Appl. Microbiol. v.23 Physiological response of Enterococcus faecalis JH2-2 to cold shock: growth at low temperatures and freezing/thawing challengs` Thammavongs, B.;D. Corroler;J.M. Panoff;Y. Auffray;P. Boutibonnes https://doi.org/10.1111/j.1472-765X.1996.tb01345.x
  16. Cryobiol. v.10 Preservation of bacteria by freezing at moderately low temperatures Wamasato, K.;D. Okuno;T. Ohtomo https://doi.org/10.1016/0011-2240(73)90075-8
  17. J. Bacteriol. v.87 Ribosomes as sensors of heat and cold shock in Escherichia coli Willimsky, S.P.A.;F.C. Neidhardt