Analyses of Genetic Relationships of Collectorichum spp. Isolated from Sweet Persimon with RAPD and PCR-RFLP.

단감나무로부터 분리한 탄저병 병원균 Colletotrichum spp.의 RAPD와 PCR-RFLP를 이용한 유연관계 분석

  • 김희종 (농우 바이오, 강원대학교 농업생명과학대학 식물응용과학부) ;
  • 엄승희 (농우 바이오, 강원대학교 농업생명과학대학 식물응용과학부) ;
  • 이윤수 (농우 바이오, 강원대학교 농업생명과학대학 식물응용과학부)
  • Published : 2002.03.01

Abstract

Colletotrichum species are important fungal pathogen that cause great damages on various host plant species worldwide. In Korea, Colletotrichum species cause massive economic losses on apple, peach, grape, and essecially, sweet persimon productions. In the past, Identification of the pathogen and the studies on the genetic relationships among the pathogenic isolates were mainly based on morphology, cultural characteristics, and the difference in pathogenicity. However, in recent years, these traditional methods have been replaced with molecular methods to solve the difficulty of classification on pathogens. Therefore, in this study, RAPD and PCR-RFLP methods were employed for the studies of genetic relationship among the different isolates of Colletotrichum species that cause damages on sweet persimon. As a results of genetic relationship analysis, Colletotrichum species tested were divided into two big groups or five small groups.

Colletotrichum spp.는 광범위한 기주범위를 갖는 다범성균으로 각종작물에 피해를주는 중요한식물병원진균이다. 최근 국내에서 널리 재배되고 있는 단감, 사과, 복숭아, 포도 등에 탄저병 이 발생하여 많은 경제적 손실을 초래하고 있다. 탄저병원균의 경우 기존에는 주로 형태적 특징이나 배지 상에서의 특성, 기주에 대한 병원성의 차이에 의존하여 분류를 해 왔다. 그러나 최근에는 병원균의 분류에 있어 문제점을 해결하기 위하여 분자생물학적 방법을 이용하고 있다. 이에 본 실험에서는 Random Amplified Polymorphism DNAs (RAPD)와 Ploymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) 기법을 이용하여 단감나무에 탄저병을 일으키는 균들 간에 유연관계를 밝혔다. 유연관계 분석결과 크게는2개의 그룹으로 나뉘었고 작게는5개의 그룹으로 나뉘는 것을 알 수 있었다.

Keywords

References

  1. Plant pathology Agrios, G.N.
  2. Phytopathol v.82 Morphological and pathological characteristics of strains of Colletotichum gloeosporioides from citrus Agostini, J.P.;L.W. Timmer;D.J. Mitchell https://doi.org/10.1094/Phyto-82-1377
  3. Mycol. Res. v.94 Restriction fragment length polymorphism in Colletotrichum gloeosporioides infecting Stylosanthes spp. in Australia Breithwaite, K.S.;J.A.G. Irwin;J.M. Manners https://doi.org/10.1016/S0953-7562(09)81345-2
  4. Phytopathol. v.82 Restriction fragment length polymorphisms in enzymatically amplified ribosomal DNAs of three heterothallic Pythium species Chen, W. https://doi.org/10.1094/Phyto-82-1467
  5. Kor. J. Mycol. v.25 RAPD analysis for the evaluation of genetic diversity among the Fusarium species from various sources Choi, H.S.;K.S. Kim;M.J. Kim;Y.S. Lee
  6. J. Agricul. Sci. v.8 Molecular analysis of genetic diversity among the Fusarium oxysporum and their forma specialis from various sources Choi, H.S.;K.S. Kim;Y.S. Lee
  7. J. Microbiol. Methods v.41 Silver stained ployacrylamide gels and fluorescence-based automated capillary electrophoresis for detection of amplified fragment length polymorphism patterns obtained from white-rot fungi in the genus trametes Dresler-Nurmi, A.;Z. Terefework;S, Kaijalainenl;K. Lindstrom;A. Hatakka https://doi.org/10.1016/S0167-7012(00)00153-6
  8. Mycol. v.84 Taxonomy and morphology of Colletotrichum species pathogenic to strawberry Gunnell, P.S.;W.D. Gubler https://doi.org/10.2307/3760246
  9. Mycol. Res. v.97 Ribosomal and mitochondrial DNA polymorphisms in Colletotrichum gloeosporioides isolates from tropical fruits Hodson, A;P.R. Mills;A.E. Brown https://doi.org/10.1016/S0953-7562(09)81130-1
  10. PCR protocols. A guide to methods and applications Optimization of PCRs Innis, M.A.;D.H. Gelfand;M.A. Innis(ed.);D.H. Gelfand(ed.);J.J. Sninsky(ed.);T.J. White(ed.)
  11. Kor. J. Mycol. v.26 Analyses of genetic relationships of Rhizoctonia solani isolated from various corp species and rapid identificatin of anastomosis group with RAPD method Lee, Y.S.;H.S. Choi;K.S. Kim
  12. Plant Dis. v.82 Identification of races of Collectotichum lindemuthianum with the aid of PCR-based molecular markers Mesquita, A.G.G.;T.J. Jr. Paula;M.A. Moreira;E.G. de Barros https://doi.org/10.1094/PDIS.1998.82.10.1084
  13. Phusili. Mol. Plant Pathol. v.39 Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogens Nazar, R.N.;X. Hu;J. Schmidt;D. Culham;J. Robb https://doi.org/10.1016/0885-5765(91)90027-F
  14. Principles of gene manipulation Polymerase chain reaction Old, R.W;S.B. Primrose
  15. Curr. Genet. v.22 Ribosomal DNA internal trascribed spacers are highly divergent in the phytopathogenic ascomycete Fuasrium sambucinum (Gibberella Pulicaris) O'Donnell, K. https://doi.org/10.1007/BF00351728
  16. Theor. Appl. Genet. v.85 Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce Paran, I.;R.W. Michelmore
  17. REMS Microbiol. Lett. v.98 Detection and differentiation of Colletotrichum gloeospoioides isolates using PCR Mills P.R.;S. Sreenivasaprasad;A.E. Brown https://doi.org/10.1111/j.1574-6968.1992.tb05503.x
  18. Lett. Appl. Microbiol. v.1 Rapid prepatration of DNA from filamentous fungi Raeder, V.;P. Broda
  19. Molecular cloning: A laboratory manual(2nd ed.) Sambrook, J.;E.F. Fritsch;T. Manitis
  20. Phytopathol. v.86 Polymerase Chain Reaction-based assays for species-specific detection of Fusarium culmorum, F. graminearum and F. avenaceum Schilling, A.G.;E.M. Moller;H.H. Geiger https://doi.org/10.1094/Phyto-86-515
  21. Physiol. Mol. Plant Pathol. v.41 DNA sequence variation and interrelationships among Colletotrichum species causing strawberry anthracnose Sreenivasaprasad, S.;A.E. Brown;P.R. Mills https://doi.org/10.1016/0885-5765(92)90026-R
  22. Plant Pathol. PCR-based detection of Colletotrichum acuattum on strawberry Sreenivasaprasad, S.;K. Sharada;A.E. Brown;P.R. Mills
  23. Exp. Mycol. v.16 Genetic and Morphological comparisons of Glomerella (Colletotichum) isolates from maize and from sorghum Vaillancourt, L.J.;R,M. Hanau https://doi.org/10.1016/0147-5975(92)90030-U
  24. Phytopathol. v.89 Genetic diversity of Fusarium oxysporum isolates from cucumber: Differentiation by pathogenicity, vegetative compatibility, and RAPD fingerprinting Vakalounakis, D.J.;G.A. Fragkiakakis https://doi.org/10.1094/PHYTO.1999.89.2.161
  25. Braz. Phytopathol. v.20 Characterization of races of Colletotrichum lindermuthianum by the random amplified polymorphic DNA technique Vilarinhos, A.D.;T.T., Jr. Paula;E.G. Barros;M.A. Moreia
  26. Gene v.23 Molecular cloning of the rDNA of Saccharomyces rosei and comparison of its transcription initiation region with that of Saccharomyces carlabergensis Verbeet, M.P.;J. Klootwijk;H. Heerikhuizen;R. Fontijn;E. Vrengdenhil;R.J. Planta https://doi.org/10.1016/0378-1119(83)90216-0
  27. Nucleic Acids Res. v.21 A simple method of preparing plant samples for PCR Wang, H.;M. Qi;A.J. Cutler https://doi.org/10.1093/nar/21.17.4153
  28. PCR Protocols Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics White, T.J.;T. Burns;S. Lee;J. Taylor;M.A. Innis(ed.);D.H. Gelfand(ed.);J.J. Sninsky(ed.);T.J. White(ed.)
  29. Nucleic Acids Res. v.18 DNA polymorphisms amplified by arbitrary primers are useful as genetic markers Williams, J.G.K.;A.R. Kubelik;K.J. Livak;J.A. Rafalski;S.V. Tingey https://doi.org/10.1093/nar/18.22.6531