Sequence Diversity of Mitochondrial Cytochrome b Gene in Grey Goral Naemorhedus caudatus(Artiodactyla, Bovidae) from Korea

한국의 산양(우제목, 소과)의 미토콘드리아 Cytochrome b 염기서열 다양성

  • Published : 2002.04.01

Abstract

To add genetic information to the conservation efforts on grey coral (Naemorhedus caudatus) in Korea, we investigated the pattern of mitochondrial cytochrome b gene sequence (606 bp) of six specimens from two localities in Korea. The corresponding sequences of N. caudatus in China obtained from GenBank were also used. The nucleotide Tamura-Nei distances between each of four haplotypes of N. caudatus in Korea and the haplotype of N. caudatus in China varied from 0.0650 to 0.0803: N. caudatus revealed high level of sequence diversity in Bovidae. In N. caudatus in Korea, the distances among three haplotypes at Yanggu were 0.0151 to 0.0185, and it suggests that the genetic diversity of Yanggu population was decreased in low level. Moreover, the distances between each of three haplotypes at Yanggu and one haplotype at Samcheok were 0.0343 to 0.0489. It indicates that habitat isolation caused the continuous increase of genetic distance with geographic distance in N. caudatus, and various conservation plans for mitigating the loss of genetic diversity in Korea have to be in immediate action. To clarify the taxonomic status of N. caudatus, the sequence (276 bp) of N. goral available from GenBank were also utilized, and n goral was not distinct from N. caudatus. It suggests that they may be conspecific, but further analyses with additional specimens of two species are necessary.

한국의 산양 (Naemorhedus caudatus)의 유전정보를 종보전에 활용하기 위하여, 한국의 2개 장소에서 채집한 6마리의 미토콘드리아 cytochrome b 유전자 염기서열(606 bp)의 양상을 조사하였다 상응하는 중국의 산양의 염기서열은 GenBank에서 얻어서 이용하였다. 한국의 산양의 4개 haplotype의 각각과 중국의 산양의 한 haplotype간의 nucleotide Tamura-Nei 거리는 0.0650부터 0.0803 가지의 변이를 보였으며, 산양은 소과 내에서 높은 수준의 염기서열 다양성을 나타냈다 한국의 산양에서, 양구표본의 3개 haplotype간의 거리는 0.0151부터 0.0185로, 양구집단의 유전자 다양성이 낮은 수준으로 감소되었음을 보여준다. 또한 양구의 3개 haplotype의 각각과 삼척의 한 haplotype간의 거리는 0.0343에서 0.0479였다. 지리적 거리의 멀어짐에 따르는 유전자 거리의 증가가 서식처 단절에 의해 야기되었다고 판단됨으로, 한국의 산양의 유전자 다양성의 감소를 막기 위한 여러 가지 보전 대책이 즉각적으로 수행되어야 할 것이다 산양의 분류학적 검토를 위하여 GenBank에 있는 히말라야산양 (N. goral)의 염기서열 (276 bp)도 이용하였으며, 산양은 히말라야산양과 뚜렷한 차이가 없었다. 산양과 히말라야 산양은 동종으로 판단할 수가 있지만, 두 종의 보다 많은 표본을 이용한 후속 연구가 필요하다

Keywords

References

  1. Grant's Gazelle v.76 Extreme genetic differences among populations of Gazella Granti Atctander,P.;O.W.Kat;R.A.Aman;H.R.Siegismund
  2. Phil. Trans. R. Soc. Lond. v.312 Mitochondrial DNA and the evolutionary genetics of higher animals Avise,J.C. https://doi.org/10.1098/rstb.1986.0011
  3. Mol. Ecol. v.8 Genetic structure of fragmented populations of red squirrel(Sciurus vulgeris) in the UK Garratt,E.M;J.Gunell;G.Malarky;R.Deville;M.W.Bruford https://doi.org/10.1046/j.1365-294X.1999.00771.x
  4. Sinauer Assiciates Evolution and population genetics of organelle genes: mechanism and models. In:Evolution at the molecular level Birky,C.W.;R.K.Selander;A.G.Clark;T.S.Whittam(eds)
  5. J. Mamm. Evol. v.8 Molecular systematics and phylogeny of the Reduncini(Artiodactyla:Bovidae) inferred from the analysis of mitochondrial cytochrome b gene sequences Birungi, J;P. Arctander https://doi.org/10.1023/A:1011369914909
  6. J. Heredity v.91 Mitochondrial DNA variation in the European otter(Lutra lutra) and the use of spatial autocorrelation analysis in conservation Cassens,I.;R.Tiedeman;F.Suchentrunk;G.B.Hartle https://doi.org/10.1093/jhered/91.1.31
  7. J. Mol. Evol. v.41 Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia Chikuni, K.;Y. Mori;T. Tabata;M. Saito;M. Monma;M. Kosugiyama
  8. J. Mamm. v.72 Mitochondrial DNA phylogeny of deer(Cervidae) Cronin, M. A.
  9. British Museum(Natural History) Check-list of Palaerctic and Indian mammals 1758 to 1946 Ellerman, J. R;T. C. S. Morrison-Scott
  10. Reclassification of the serows and gorals(Naemorhedus: Bovidae) The Biology and management of mountain ungulates Groves, C. P.;P. Grubb
  11. Mol. Phylogenet. Evol. v.5 Phylogentics of the Caprinae based on cytochrome b sequences Groves, P.;G. F. Shields https://doi.org/10.1006/mpev.1996.0043
  12. Order Artiodactyla Mammal species of the world: a taxonomic and geographic reference Grubb, P.;E. E. Wilson;D. M. Reeder(eds)
  13. TREE v.16 Conservation genetics: where are we now? Hedrick, P. W.
  14. Molecular systematics Molecular systematics Hillis, D. M.;C. Moritz;B. K. Mable(eds)
  15. J. Mol. Evol. v.32 Evolution of the cytochrome b gene of mammals Irwin, D. M;T. D. Kocher;A. C. Wilson(외 2인 저) https://doi.org/10.1007/BF02515385
  16. American Naturalist v.142 Risks of population extinction from demographic and environmental stochasticity and random catastrophes Lande, R. https://doi.org/10.1086/285580
  17. Walker's mammals of the world v.2 Walker's mammals of the world Nowak, R. M.(6th eds.)
  18. Proc. Natl. Acad. Sci. USA v.91 A role for molecular genetics in biological conservation O'Brien, S. J. https://doi.org/10.1073/pnas.91.13.5748
  19. Bio. J. Linn. Soc. v.10 Spatial autocorrelation in biology 2. Some biological implication and four applications of evolutionary and ecological interest Sokal, R. R;N. L. Oden https://doi.org/10.1111/j.1095-8312.1978.tb00014.x
  20. TREE v.15 Efficient genetic markers for population biology Sunnucks, P.
  21. Mol. Biol. Evol. v.10 Estimation of the number of nucleotide substitutions in the control region of mitochondreal DNA in humans and chimpanzees Tamura,K;M.Nei
  22. Mammals of eastern Asia Mammals of eastern Asia Tate, G. H. H.
  23. Biol. J. Linn. Soc. v.26 Mitochondrial DNA and two perspectives on evelutionary genetics Wilson, A. C.;R. L. Cann;S. M. George;U. B. Gyllensten;K. M. Helm-Bychowski https://doi.org/10.1111/j.1095-8312.1985.tb02048.x