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CLAPP-PUPPE TYPE LUSTERNIK-SCHNIRELMANN
(CO)CATEGORY IN A MODEL CATEGORY

DONALD YAU

ABSTRACT. We introduce Clapp-Puppe type generalized Lusternik-
Schnirelmann (co)category in a Quillen model category. We estab-
lish some of their basic properties and give various characterizations
of them. As the first application of these characterizations, we show
that our generalized (co)category is invariant under Quillen mod-
elization equivalences. In particular, generalized (co)category of
spaces and simplicial sets coincide. Another application of these
characterizations is to define and study rational cocategory. Vari-
ous other applications are also given.

Introduction

Clapp and Puppe [5, 6] generalized the classical Lusternik-
Schnirelmann category by introducing a class A of spaces and called the
new invariant A-category. The usual LS category of spaces is obtained
by taking A = {*} (or the class of contractible spaces)., In the 1960s,
Ganea [15, 16, 17] introduced an invariant for spaces which he called
cocategory as a dual to LS catcgory within the framework of Eckmann-
Hilton duality. Related notions of cocategory were later introduced by,
in chronological order, Varadarajan [32], Hopkins [23], Hovey [24], and
Doeraene [9, 10]. See James’ survey article [26] for general information
about LS category.

The purpose of this paper is to study generalized (co)category (in
the sense of Clapp-Puppe) in a Quillen model category. On the one
hand, our generalization of (co)category. denoted Acate (A cocatc),
when applied to pointed spaces, is just Clapp-Puppe’s A-category, and
if we further take A to be the class of contractible spaces, then we re-
cover Ganea’s (co)category. Omn the other hand, if A consists of the
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contractible objects in a model category C, then our A catc reduces to
Doeraene’s Ccat. So our work can be regarded as a common general-
ization of those of Clapp-Puppe and of Doeraene.

This paper is organized as follows. In Section 1 we introduce our
Clapp-Puppe type generalization of LS (co)category in a Quillen model
category and establish some basic properties. The main purpose of Sec-
tion 2 is to obtain various characterizations of our generalized cocategory
(resp. category) in terms of homotopy pullbacks (resp. pushouts). In
Section 3.1 we will use these characterizations to prove the invariance of
generalized (co)category under Quillen modelization equivalences. Then
in Section 3.2 we define rational cocategory in terms of Sullivan’s min-
imal model and use the results in Section 2 to prove that Ganea’s co-
category rationalizes to our rational cocategory and that our rational
cocategory satisfies the (rational) fibration property. Section 3.3 con-
tains formulae for the generalized cocategory (resp. category) of a finite
Cartesian product (resp. coproduct) and the generalized cocategory of
a homotopy function complex.

We assume that the reader is familiar with the language of model
category, of which [12, 25] are good references.

I would like to express my deepest gratitude to Professor Haynes
Miller for many hours of inspiring conversations and encouragement. I
would also like to thank the referee for helpful suggestions.
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1. A-category and A-cocategory

Throughout this paper, we work with pointed proper model cate-
gories, usually denoted by C, D etc. For an object X in a model cat-
egory, QRX denotes, as usual, its functorial fibrant-cofibrant replace-
ment. C.y denotes the full subcategory of C consisting of all objects that
are both fibrant and cofibrant. We call these objects fibrant-cofibrant.
The symbols —», +, and — denote, respectively, a fibration, cofibra-
tion, and weak equivalence.

The purposes of this section are to introduce A catg and A cocate
and to establish some basic properties, which will set the stage for our
work in Section 2 and Section 3.

In Section 1.1 we give a brief account of Clapp-Puppe’s generalization
of LS category. Our definition of .A-cocategory is given in Section 1.2,
in which we also show that our A cocat is well-defined and is invariant
under weak equivalences. It is shown in Section 1.3 that there is no
loss of generality in assuming that A is closed under weak equivalence
(within Cgf). In Section 1.4 we show that if an object Y is a retract
of another object X, then the A-cocategory of Y is no bigger than that
of X. In Section 1.5 we present the dual definition of A-category and
corresponding dual results for Acat. .

1.1. Clapp-Puppe’s generalization of LS category

Our definition of generalized (co)category is based on the generalized
category introduced by Clapp and Puppe [5, 6]. In this subsection we
give a summary of some of their main results.

Let A be a class of spaces with at least one non-exapty space. The A-
category of a space X, denoted A cat(X), is the smallest integer n > 0
such that there exists an open covering {Xo,...,X,} of X and each
inclusion X; < X factors through some space in A up to homotopy;
if no such integer n exists we put Acat(X) = co. Such a covering is
said to be A-categorical. The strong A-category A Cat(X) of X is the
least integer n > 0 (or oo if no such n exists) for which X is homotopy
equivalent to a space X’ that has an open covering {X{,..., X} such
that each X/ has the homotopy type of some space in A. Acat(X) and
A Cat(X) are invariants of the homotopy type of X, and the former
satisfies a general version of the Eilenberg cup-length theorem.

For many purposes it is convenient to have a certain “universal” map
f: U — X from a space U € A into X with the property that every map
from a space A € A into X factors through f (not necessarily uniquely)
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up to homotopy. Such a map f is called an A-left-versal map for X.
(Clapp and Puppe called it A-universal.) The reader is referred to [5,
4.2] for examples of classes A for which every space has a left-versal
map.

Let f: Y — X be a map. Define a sequence of fibrations f,: Y, —
X inductively as follows. Let f; be the fibration associated with f.
Suppose f is defined for some k > 1. Form the pullback (which is

also a homotopy pullback) ¥; xx ¥, = lim (Y1 4, X & Yk), let Yk’ 41

be the homotopy colimit of the diagram (Y7 «— Y7 xx Y} — Y%), and
let fre1: Ye+1 — X be the fibration associated with the map that is
induced by f; and f.

It is clear that the classical construction of the Milnor filtration
{Bn2X} is (up to homotopy) the case when ¥ = .

Now given a map f: Y — X, replace it by its mapping cylinder
f:Y — M(f), identify Y with the top of the mapping cylinder, and
define the k-fold fat-wedge ng X of X under Y to be the subspace of
the Cartesian product M (f)* consisting of all points with at least one
coordinate in Y.

THEOREM 1.1 ([5] 4.6, 4.8, 4.9, 5.5). Let f: Y — X be an A-left-
versal map for X. Then the following are equivalent:
1. Acat(X) < k;
2. the fibration fi11 has a section;
3. the diagonal map A: M(f) — M(f)**! factors through the (k +
1)-fold fat-wedge WY, ;X of X under Y up to homotopy;
4. X is a homotopy retract of a space Z with A Cat(Z) < k.

THEOREM 1.2 ([6] Theorems 1, 7, 7). Let A, B and € be classes of
spaces satisfying:

1. Ax B € hC for all spaces A € A and B € B;

2. hC is closed under finite disjoint unions.
Then for any spaces X and Y,

Ceat(X xY) < Acat(X) + B cat(Y).
The same inequality holds with Cat replacing cat throughout.
1.2. A-cocategory

In this subscction we give the definition of the A-cocategory of an
object X and show that it is invariant under weak equivalences.
First we need some definitions.
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DEFINITION 1.3. Let A C C.r be a non-empty class of fibrant-
cofibrant objects in C and let X € C.y. Let f: X — U € A be a
map such that for every map ¢g: X — A € A, there exists a (not neces-
sarily unique) map h: U — A such that g ~ ho f. Such a map f is said
to be an A-right-versal map for X. The class A is said to be right-versal
if every fibrant-cofibrant ohject in C has an A-right-versal map.

Let A be a right-versal class in C. We want to define the A-
cocategory, Acocatc(X), of a fibrant-cofibrant object X in C. Let
f: X — U be an A-right-versal map for X. We construct a sequence of
cofibrations f,: X — U, as follows. The map f; is the canonical cofibra-
tion associated to f, i.e., apply the functorial factorization to f = pfi
so that fi is a cofibration and p is an acyclic fibration. Suppose the
cofibration f: X — Uy is defined for some k > 1. Take the (homotopy)

pushout Uy Vx U = colim (Ul Lxiy Uk), apply functorial factoriza-

tion (an acyclic cofibration followed by a fibration) to the induced map
fr: Uy = Uy Vx Up and take the pullback:

Fr . U

X
\\fl:?—l—l. /
=

f1 UI::—I—I h

|

U ————— U1 vx Uy
"\ lfV
Vi

where we set U/ = Uy Vx U and Uy = V3 xpy Ug. Take fre1: X —
Ui+1 to be the canonical cofibration associated with the induced map
frpa: X = Upyy-

DErFINITION 1.4. Let A be a right-versal class in C. The A-
cocategory of a fibrant-cofibrant object X, denoted A cocat(X) (or just
Acocat(X) when there is no danger of confusion), is the least integer

n > 0 (possibly oco) such that f,4+1 has a homotopy retraction, i.e., a
map r: Upe1 — X such that rf,, 11 ~idx.

Whenever the symbol A cocate (or A cocat) occurs it is understood
that A is a right-versal class. The definition of the A-cocategory of an
arbitrary object X is given in Definition 1.9 below.
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REMARK 1.5. In the above construction each Uy is both fibrant and
cofibrant. Also, each Uy, is fibrant because there is a fibration from it to
Ug.

ProrosITION 1.6. Let X be a fibrant-cofibrant object in C. Then
Acocat(X) is independent of the choice of an A-right-versal map for
X.

This proposition is a straightforward consequence of the following
lemma.

LemMma 1.7. If f: X — U and g: X — S are both A-right-versal
maps for X, then for each integer k > 1 there exists a map [y : Ur — S
in C such that By fr ~ gk-

For the proof of Lemma 1.7 we will use the following standard ter-

minology. Given a diagram {X L z& Y} the induced map from the
pullback of the diagram, X xz Y, to Y is denoted by f* and is called
the base change of f (along g). There is also a dual notion of cobase
change.

Proof of Lemma 1.7. The proof is by induction. The A-right-
versality of f implies that there exists a map 51: U — § in C such
that 3] f ~ g. So there is a homotopy commutative diagram in C:

U
S
]
By [25, 1.2.8] a map h: X3 — X2 between fibrant-cofibrant objects is a
weak equivalence if and only if it is a homotopy equivalence. So there

exists a homotopy inverse §8;: § — S; such that 8]/m ~ idg,. Now it
follows that

A

XI

a1

@«———s -

r 1o

~ 51’7'191 = f{g ~ ﬁ1f 5 'Bro1f1-
So we can take [31 to be BYB{01. This gets the induction started.
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Suppose that for some k& > 1 the map 8y: Uy — Sy in C exists such
that Ok fr, ~ gr- Consider the following commutative diagram in Ho C:

B+l _
fi Ullc—l—l h

U:l ’ - U1 Y Uk g1
,61 Vk SIH—I

_k‘
o / S]_ \/ Sk __._._)‘ RS”
\ %

in which Uk+1 =V Xyy U, Sk+1 =T X1 Sy, where U}! = Uy Vx Uy
and S}, = S1Vx Sy are the (homotopy) pushouts The map r is the func-
torial fibrant replacement of 5. By the results in [12, Section 10] the
maps rgrfS1: U1 — Sy and rglﬂ; U — S} induce amap §: U}/ — S in
Ho C such that 6 fx = grf1 and 6f1 = §18x. The map fi: Uy — Vi is an
acyclic cofibration in C and so is an isomorphism in Ho C. An argument
similar to the one above, using the universal property of S;_ |, yields a

map By Uppy — Sioq in HoC such that §§65c+1 = g}c,&(f{c)_lﬂ and
§Zﬁ Bri1 = B f,’c'n. A diagram-chase now shows that in Ho C the com-
posite 3 1 fr..: X — S;c+1 satisfies §1ﬁ12+1f,’£+1 = gkﬁl(f,’c)—lfffl’chl =
761f1 = ghor and g}" 5;+1fk+1 /ka,,ufk+1 = Brfr = gr. Thus it
follows from the uniqueness of g} ,,: X — S;_; that g; ., = 8,1 f14
in HoC. Now write fi,, = fi, 1 frr1 and g,y = g5, 19k+1, €ach as a
cofibration followed by an acyclic fibration. The composite Ggiy1 =
(9041) Bry1fir in HoC satisfies Srrafeer = (9341) B figr =
(0he1) "1 = (9h01) " gl 19k41 = Gre41. But since both Ugyi and
Sk+1 are fibrant and cofibrant (see Remark 1.5), the map Gxy1 in HoC
lifts to a map (which we also call) Bx+1 in C that has the required prop-
erty. This finishes the induction and also the proof of Lemma 1.7. [
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DerFINITION 1.8. Let X be an object in a model category C. By a
fibrant-cofibrant replacement of X we mean a fibrant-cofibrant object W
in C, together with a zig-zag of weak equivalences connecting X with
w.

DEFINITION 1.9. Let C be a pointed proper model category, let A be
a right-versal class in C, and let X be an arbitrary object in C. Then the
A-cocategory of X, denoted A cocatc(X) (or simply A cocat(X) when
there is no danger of confusion), is the A-cocategory of any fibrant-
cofibrant replacement of X (see Definitions 1.4 and 1.8).

It will follow immediately from Lemmas 1.10 and 1.11 below that the
A-cocategory of an arbitrary (not necessarily fibrant-cofibrant) object is
well-defined.

LEMMA 1.10. Let W and Y be two fibrant-cofibrant replacements
of an object X in a model category C. Then there is a homotopy
equivalence h: W =5 Y,

This is a standard result in model category theory, so we omit the
proof.

LEMMA 1.11. If f: X 5 Y is a weak equivalence of fibrant-cofibrant
objects in C, then Acocat(X) = A cocat(Y').

Proof. If a: Y — U € A is an A-right-versal map for Y, then the
composite 3 :=af: X - UX =U is an A-right-versal map for X, since
J has a homotopy inverse, say, h [25, 1.2.8]. Thus one can construct
maps fr: U,f( —» U, inductively such that the solid-arrow square

Xt

5nl h anrhr

is homotopy commutative. If roy, ~ idy, then hr f,,8, ~ hranf ~ hf ~
idx. So Acocat(X) < Acocat(Y). One can apply the same argument
to h: Y — X and obtain A cocat(Y) < A cocat(X).

This finishes the proof of Lemma 1.11. 0

ProposITION 1.12. Suppose X and Y are weakly equivalent objects
in C. Then Acocat(X) = Acocat(Y). Therefore, A-cocategory is an
invariant of the weak equivalence class of an object.
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Proof. 1t is clearly sufficient to prove the proposition when there is a
weak equivalence f: X — Y. There is a commutative diagram in C:

X TX y RX . qarx QRX
7| |z lors
Y —— RY +——— QRY

in which all the horizontal arrows are weak equivalences, Thus, by the
2-out-of-3 axiom of a model category, QRf is a weak equivalence. The
result now follows from Lemma 1.11 and Definition 1.9 U

We end this subsection with the following easy but useful observation.

ProrosiTiON 1.13. Let X be an arbitrary object in C. Then
A cocat X = 0 if and only if its functorial fibrant-cofibrant replacement
QRX is a homotopy retract of some object in A.

1.3. A convention

In this short subsection we note that we can assume, without loss of
generality, that a right-versal class A is closed under weak equivalences.
If C is a pointed proper model category and A is a right-versal class in
C (see Definition 1.3), we consider the two classes wA and rA, both of
which contain A, where:

e X c wA if and only if X is fibrant-cofibrant and is weakly equiv-
alent to some object A € A,;

e X € rA if and only if X is fibrant-cofibrant and there exist maps
i: X — Aand r: A — X for some object A € A such that the
composite ri is homotopic to the identity of X.

The following proposition is an immediate consequence of the above
definition.

ProproOSITION 1.14. The classes rA and wA are right-versal in C and
rAcocat X = Acocat X — wAcocat X for any object X in C.

Proposition 1.14 says that the invariant A cocat X will not change if
the class A is replaced by the (possibly bigger) classes wA or rA. For
various reasons, the class w.A is easier to work with than either A or rA,
and so we adopt the following

CONVENTION 1.15. From now on, when we say that a non-empty
class A is a right-versal class in C we mean:

e every object in A is fibrant and cofibrant;
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e every fibrant-cofibrant object in C has an A-right-versal map (see
Definition 1.3);
e A is closed under weak equivalences in Ccy.

1.4. Retract property

The purpose of this subsection is to prove the following retract prop-
erty of A-cocategory.

THEOREM 1.16. Let X and Y be objects in a pointed proper model
category C. If'Y is a retract of X (Definition 1.17 below), then
Acocatc(Y) < Acocate(X).

Before proving Theorem 1.16 let us make precise what we mean by
retracts. Recall that @) and R are, respectively, the functorial cofibrant
replacement functor and the functorial fibrant replacement functor in

C.

DEFINITION 1.17. Let X and Y be two objects in C. We say that ¥V
is a retract of X if there exist maps i: Y — X and r: X — Y such that

QRT‘ o QR’L ~ idQRy.

Theorem 1.16 is an immediate consequence of the following two lem-
mas.

LEMMA 1.18. Let X and Y be two fibrant-cofibrant objects in C,
and let i: Y — X andr: X — Y be maps such that the composite ri is
homotopic to the identity map of Y. If f: X — U is an A-right-versal
map for X, then the map o := fi: Y — UY = U is an A-right-versal
map for Y.

LEMMA 1.19. With the same hypotheses as in Lemma 1.18, there
exists for each integer k > 1 a map py: UY — Uy such that prag ~ fii.

Assuming Lemmas 1.18 and 1.19 for the moment, let us give the

Proof of Theorem 1.16. There are maps i: QRY — @RX and
r: @QRX — QRY such that ri ~ idgry. If f: QRX — U is an A-right-
versal map for QRX, « := fi as in Lemma 1.18, and if s: Uy — QRX
is & homotopy retraction of fr, then it is clear that the composite
TSP U,?RY — QRY, with ¢ as in Lemma 1.19, is a homotopy re-
traction of ay. This finishes the proof of Theorem 1.16. O

Now we prove the two lemmas used in the proof of Theorem 1.16.
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Proof of Lemma 1.18. Let g: Y — A be any map with A € A. We
must show that it factors through o up to homotopy. There exists a
map h: U — A such that hf ~ gr, by the A-right-versality of f, and
therefore g ~ gri ~ hfi = ha. O

Proof of Lemma 1.19. The proof of this Lemma uses the same sort
of induction argument and techniques as in the proof of Lemma 1.7, so
we leave the details to the interested reader. O

1.5. A partial ordering on right-versal classes

What happens if we enlarge the class A? In this subsection we give
an answer to this question.

DerINITION 1.20. Let C be a pointed proper model category. Define
a partial ordering < on the class of right-versal classes in C as follows:
If A and B are right-versal classes, then we say that A < B if and only
if A cocat X < B cocat X for all objects X in C.

The main result of this subsection is the following

THEOREM 1.21. Let A and B be two right-versal classes in C. Then
the following conditions are equivalent: (1) A < B; (2) rB C rA (Section
1.3).

Proof. We first prove (1) = (2). Solet X € 7B. Then X is a fibrant-
cofibrant object in C and there exists an object B € B of which X
is a retract (see Definition 1.17). Since B cocat B = 0, it follows from
the retract property (see Theorem 1.16) that A cocat X < Acocat B <
B cocat B = 0, and so X is a retract of some object in A, ie., X € rA.
This proves (1) = (2).

The implication (2) = (1) follows readily from Lemma 1.22 below.

O

LeMMA 1.22. Let A and B be two right-versal classes in C such that
A C B, let X be a fibrant-cofibrant object in C, and let a: X — U and
B: X — V be, respectively, A-right-versal and B-right-versal maps for
X. Then for each integer k > 1 there exists a map ~y.: Vi — U such
that vp 0k ~ a.

Proof. Since this proof involves the same sort of induction argument
and techniques ag in the proof of Lemma 1.7, we omit the details. [
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1.6. A-category

The results in the previous subsections are readily dualizable. In
this subsection, we give the definitions and corresponding statements
for A-category and omit the strictly dual proofs.

DEeFiNITION 1.23. Let C be a pointed proper model category, let A
be a non-empty class of fibrant-cofibrant objects in C, and let X be a
fibrant-cofibrant object in C. A map f: A — X with A € A is called an
A-left-versal map for X, if any map from an object in A into X factors
through f (not necessarily uniquely) up to homotopy. The class A is
said to be left-versal in C if every fibrant-cofibrant object in C has an
A-left-versal map.

For example, given a pointed space A, the class €(A) of A-cellular
spaces (cf. [13, 2.D]) is left-versal, as is the class of all nonempty, possibly
infinite wedges of spheres 8™ with n > 1.

As for right-versal classes we adopt the following

CONVENTION 1.24. When we say that a non-empty class A is a left-
versal class in C we mean: (1) every object in A is fibrant and cofibrant,
(2) every fibrant-cofibrant object in C has an 4-left-versal map, and (3)
A is closed under weak equivalences (in C.y).

Now let A be a left-versal class in C and let f: A — X be an A-
left-versal map for a fibrant-cofibrant object X. We can apply the dual
of the construction preceding Definition 1.4 to the map f and obtain a
sequence of fibrations f,: 4, — X, n > 1.

DEFINITION 1.25. Let A be a left-versal class in C and let X be
a fibrant-cofibrant object in C. The A-category of X in C, denoted
Acatc(X) (or just A cat(X) if there is no danger of confusion), is the
least integer n > 0 (possibly co) such that f,+1 has a homotopy section,
that is, a map s: X — Any1 such that f,,15 ~ idx. The A-category
of an arbitrary (not-necessarily fibrant-cofibrant) object is defined to be
that of any of its fibrant-cofibrant replacement.

Whenever the symbol A catc (or A cat) appears it is understood that
A is a left-versal class,

As for A-cocategory, the A-category of an arbitrary object X is well-
defined.

PROPOSITION 1.26. Suppose that X and Y are weakly equivalent
objects in C. Then Acatc(X) = Acatg(Y).
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PrOPOSITION 1.27. Let X be an arbitrary object in C. Then
Acat(X) = 0 if and only if its functorial fibrant-cofibrant replacement
QRX is a homotopy retract of some object in A.

THEOREM 1.28. Let Y be a retract of X (Definition 1.17). Then
Acat(Y) < Acat(X).

PROPOSITION 1.29. Let A and B be two left-versal classes in C. Then
rA C rB if and only if B cat(W) < A cat(W) for all objects W in C.

2. Alternative characterizations of A-(co)category

In the previous section we introduced A-(co)category in a (pointed,
proper) model category C. The main result of this section, the Homo-
topy Pullback (resp. Pushout) Property, gives several alternative charac-
terizations of A-cocategory (resp. A-category). These characterizations
will be used repeatedly in Section 3.

Before stating the main result of this section we need some definitions.

DEFINITION 2.1. Let A be a right-versal class in C and let X be
a fibrant-cofibrant object in C. The A-fiber-length of X, denoted
Af.le(X) (or simply Af.1(X) if there is no danger of confusion), is
defined inductively as follows: Af.1.(X) = 0 if and only if X is in A;
Af.1.(X) = n for some integer n > 0 if and only if Af.1.(X) %= m for

any 0 < m < n and there is a pullback X’ = lim (Y Lz W) in

C such that g is a fibration, W lies in A, Af.L(Y)=n—1and X' is
weakly equivalent to X,

If X is an arbitrary object in C, then the A-fiber-length of X, denoted
Afle(X) (or simply Af.1.(X) if there is no danger of confusion), is
defined to be the A-fiber-length of any fibrant-cofibrant replacement of
X.

It is clear that the A-fiber-length of a fibrant-cofibrant object X is
invariant under weak equivalences in C.f, and hence, by Lemma 1.10,
the A-fiber-length of an arbitrary object is also invariant under weak
equivalences.

From now on, whenever the symbol Af.L¢ (or Af.]l.) occurs, it is
understood that A is right-versal.

Dually, we can define the A-cone-length of X, denoted Ac.l.c(X) (or
simply Ac.1.(X)), if A is left-versal. Whenever the symbol Ac.L¢ (or
Ac.l.) occurs, it is understood that A is left-versal.
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REMARK 2.2. In [7, 8] Cornea studied the cone-length of a space and
showed that his cone-length and Ganea’s strong category coincide. Our
A-cone-length is a generalization of Cornea’s: Take A to be the class of
contractible cell-complexes and A c. Loy, is Cornea’s cone-length.

We are now ready for the main result of this section:

THEOREM 2.3 (Homotopy Pullback Property). Let A be a right-
versal class in C and let X be an arbitrary object in C. The following
statements are equivalent:

1. Acocat(X) < n.

2. There exists a fibrant-cofibrant object Z with A-fiber-length < n

of which QRX is a homotopy retract.

3. There exists a fibrant-cofibrant object Z of which QRX is a ho-

motopy retract and such that Z is weakly equivalent to the pull-

back of a diagram (Zz 5 A &L Zl) in which p is a fibration,
Acocat(Zy) < n— 1, Zy is weakly equivalenf to some object in
A.

4. Same as (3) with the last condition replaced with A cocat(Z3) = 0.
5. There exist commutative squares

Lo

Wi — Z; (OS’LS?’L—I)

such that
e QRX is a homotopy retract of X,_1,
o Yy and each W; € A,
e X;~Yi1forj=0,...,n—2,
e each square is a homotopy pullback of fibrant-cofibrant ob-
jects.

Dually, we have

THEOREM 2.4 (Homotopy Pushout Property). Let A be a left-versal
class in C and let X be an arbitrary object in C. The following state-
ments are equivalent:

1. Acat(X) <n.

2. There exists a fibrant-cofibrant object Z with A-cone-length < n

of which QRX is a homotopy retract.

3. There exists a fibrant-cofibrant object Z of which QRX is a

homotopy retract and such that Z is weakly equivalent to the
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pushout of a diagram (Zg £ Zo S Zl) in which p is a cofibra-
tion, Acat(Z1) < n—1, Z is weakly equivalent to some object in
A.
4. Same as (3) with the last condition replaced with A cat(Zs) = 0.
5. There exist commutative squares

Z; ~— W,

U

Y,— X, (0<i<n—1)

such that
o QRX is a homotopy retract of X,_1,
® Yy and each W; € A,
o X;~Y; 1 forj=0,...,n—2,
e cach square is a homotopy pushout of fibrant-cofibrant objects.

Although the definition of A-cocategory (resp. A-category) involves
both homotopy pullback and homotopy pushout squares, the last con-
dition of Theorem 2.3 (resp. 2.4) says that A-cocategory (resp. .A-
category) can be characterized completely by homotopy pullbacks (resp.
pushouts).

Since the proof of Theorem 2.4 is strictly dual to that of Theorem
2.3, we will only give the proof of the later.

Proof of Theorem 2.3. We first prove the equivalence of conditions
(1), (3), and (4), for which we need the following three lemmas.

LEMMA 2.5. Let f: X — Y be a map between fibrant-cofibrant ob-
jects in C and let o: X — U and : Y — V be A-right-versal maps for
X and Y, respectively. Then for each integer k > 1 there exists a map
fr: Up — Vi such that frog ~ Opf.

LEMMA 2.6. Let
757
fl lq
Zy —7 Zo
be a pullback in C such that p is a fibration and A cocat(Zy) = 0. Then
Acocat(Z) < 1+ Acocat(Zy).

LeMMA 2.7. Let f: X — U be an A-right-versal map for a fibrant-
cofibrant object X in C. Then Acocat(Uy) < k for each integer k > 1.
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Assuming Lemmas 2.5, 2.6, and 2.7 for the moment, let us prove the
equivalence of conditions (1), (3), and (4).
(1) = (3). Let f: QRX — U be an A-right-versal map for QRX.
The hypothesis implies that f,+1 has a homotopy retraction. But Upiq
is weakly equivalent to Uy ,, which is the pullback of the diagram

(Vn LY Uy vx U, «— Un> in which f, is a fibration, V;, is weakly equiv-

alent to Uy and A cocat(Uy,) < n — 1 by Lemma 2.7. This proves that
(1) = (3).
(3) = (4). This is immediate because every object in A has A-cocategory
0 and A cocat is invariant under weak equivalences.
(4) = (1). This follows from the retract property (Theorem 1.16), in-
variance of A-cocategory under weak equivalences (Proposition 1.12)
and Lemma 2.6.

To prove (1) < (2), we need the following two lemmas.

LEMMA 2.8. Let f: QRX — U be an A-right-versal map for QRX.
Then Af.1.(U,) < n for each integer n > 1.

LEMMA 2.9. For any object X in C, Acocatc(X) < Af.lLc(X).

Agsuming Lemmas 2.8 and 2.9 for the moment, let us prove the equiv-
alence of conditions (1) and (2).
(1) = (2). If Acocat X < n, then QRX is a homotopy retract of Upiy
which by Lemma 2.8 has A-fiber-length at most n. This proves (1) =
(2)-
(2) = (1). There is a pullback Z’ = lim (Y] 2y, & Yg) in which 2’
is weakly equivalent to a fibrant-cofibrant object Z of which QRX is a
homotopy retract, ¢ is a fibration, Y5 lies in A, and Af.L(Y7) <n — 1L
Since A cocat(Y1) < n—1 by Lemma 2.9, it follows from the equivalence
of conditions (1) and (3) proved above that A cocat(X) < (n—1)+1 = n.
This proves (2) = (1).

Now we prove the equivalence of conditions (2) and (5).
(5) = (2). This follows from the easy observation that in condition (5),
Af.L(X;) <i+1 for each ¢.
(2) = (5). There is a pullback X, ; == lim (W'.n_l 3 Zly — Yn—l)
such that g,-1 is a fibration, W,_1 € A, Af.1(Y,—1) < n -1
and Z ~ X,.1. Apply the functorial fibrant-cofibrant replacement
functor QR to the above square, thus getting a homotopy pullback
QRX,_1 = lim (QRW,_1 — QRZ,_1 — QRY,-1) of fibrant-cofibrant
objects such that QRX is a homotopy retract of QRX -1, QRWp_1 €
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A, Af.1L(QRY,_1) < n—1. Now the same argument applies to QRY,,_1,
QRY,,_s etc. and we have shown (2) = (5).
We still have to prove the lernmas stated above.

Proof of Lemma 2.5. The proof is essentially identical with that of
Lemma 1.22, with idx replaced with the map f. The induction starts
because of the A-right-versality of a. O

Proof of Lemma 2.6. First we note that, without loss of generality,
we may assume that all the four objects in the diagram are fibrant
and cofibrant. Indeed, since Z is the (homotopy) limit of the diagram
{Z2 — Zy — Z1}, there are weak equivalences

Z ~ holim{QRZy — QRZy — QRZ:}
~ Qholim{QRZg —* QRZO o QRZl}

In the last diagram all the objects are fibrant and cofibrant. We can
replace QRp by a fibration, all the objects still being fibrant-cofibrant.

Let, then, a: Z — U, 841 — V, Zo — T and Zyp — 8 bhe A-
right-versal maps for the corresponding objects. Let r: V; — Z; be a
homotopy retraction of 3. We must show that a1 admits a homotopy
retraction. Consider the following diagram in Ho C:

%Ul — Q;2~+1 Z f — 4 q
U —|— Uiy o Zy —2 s 7
N N l/,
Ry, « Uk » Vi

NN

T ———— S

which is commutative, except possibly for the Uy-Vi-Sp-T square, and
in which Ry = U1 Vz Uy, Upy = Ul xg, Uy, and o}, is the induced
map. The rest of the proof consists of diagram-chasing in the above
diagram and uses the same techniques as in the proof of Lemma 1.7, so
we leave it to the reader. [

Proof of Lemma 2.7. We proceed by induction on &, the case k = 1
being obvious because Uy € A. Suppose that A cocat(Uy) < k for some
integer k > 1. Since A-cocategory is invariant under weak equivalences
(see Proposition 1.12), it suffices to show that A cocat(Uy, ;) < k. There
is a pullback Uy, = lim (V, - Ry « Uy) in C in which V}, is weakly
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equivalent to Uy, and hence has A-cocategory 0, and Acocat Uy < k—1
by induction hypothesis. The result now follows from Lemma 2.6. O

Proof of Lemma 2.8. The proof is by induction on n. If n = 1, then
Af.1.(U1) = 0 because Uy € A. Suppose n > 1. There is a pullback
U, =lim (U] = Uy Vgrx Un—1 + Un—1) in which U}, is weakly equiva-
lent to Uy, Uj is weakly equivalent to U, and Af.1.(Up—1) < n—1 by
induction hypothesis. Thus Af.1.(U,) < n by definition. This finishes

the induction and the proof of Lemma 2.8. O
Proof of Lemma 2.9. This follows immediately from the equivalence
of conditions (1) and (3), whose proof does not use Lemnma 2.9. O
The proof of Theorem 2.3 is now complete. O

3. Applications of the homotopy pullback and pushout prop-
erties

In this section we apply the main result of Section 2, the Homotopy
Pullback and Pushout Properties, to obtain further properties of our
generalized (co)category. The main result of Section 3.1 is that our gen-
eralized (co)category is invariant under Quillen equivalences which are
also modelization functors. In Section 3.2 we show that our general ap-
proach to (co)category can be specialized to obtain a reasonable notion
of “rational cocategory” of spaces which coincides with Ganea’s cocat-
egory for (nice) rational spaces and which also satisfies the fibration
property. The final section contains formulae for the generalized cocat-
egory of a homotopy function complex and the generalized cocategory
(resp. category) of a finite product (resp. coproduct).

3.1. A-(co)category under Quillen functors

In this subsection we show that A-(co)category is not changed under
Quillen modelization equivalences, i.e., Quillen equivalences (see [25])
which are also modelization functors (see [10]). Recall that a modeliza-
tion functor is a functor that preserves weak equivalences, homotopy
pullbacks and homotopy pushouts.

We begin with a preliminary result.

PROPOSITION 3.1. Let F': C — D be a (left or right) Quillen functor
that is also a modelization functor. Let A be a right-versal class in
C and B be a right-versal class in D such that, whenever Y € D,y is
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weakly equivalent to F'A for some object A € A, then Y € B. Then for
any object X in C, Acocatc(X) > Bcocatp(FX).

Now we can state the result concerning the invariance of A-cocategory
under Quillen modelization equivalences.

THEOREM 3.2. Let F': C = D: U be a pair of Quillen equivalences
with F' and U both modelization functors. Let A be a right-versal class
in C and B be a right-versal class in D. Assume that F takes fibrant
objects to fibrant objects and U takes cofibrant objects to cofibrant
objects. Then:

1. There exists a right-versal class A" in D such that for any object
X in C, Acocate(X) = A’ cocatp(FX).

2. There exists a right-versal class B’ in C such that for any object
Y in D, Bcocatp(Y) = B’ cocatc(UY).

This theorem has an Eckmann-Hilton dual in which right-versal is
replaced by left-versal and A cocat is replaced by A cat throughout. Its
proof ig strictly dual to that of 3.2. We will not state this result explicitly.

Theorem 3.2 and its dual apply, for example, to the adjoint pair

| —|: 8S. & Top,: Sing

of Quillen equivalences, where | — | and Sing denote, respectively, the
geometric realization functor and the singular complex functor.

Proof of Proposition 3.1. Write n = Acocatc X. If n = oo then
there ig nothing to prove, and the case n = 0 is easy. So suppose
0 < n < co. Then there are homotopy pullback diagrams as in Theorem
2.3. Applying the modelization functor QRF to them we see at once
that Bcocatp(FX,—1) = Bceocatp(QRFX,,—1) < n. Since FQRX is
a retract of FX,_1, Bcocatp(FX) = Bceocatp(FQRX) < n. This
finishes the proof of Proposition 3.1. O

Proof of Theorem 5.2. We need the following two lemmas.

LEMMA 3.3. Let F': C 2 D: U be a pair of Quillen equivalences and
let A and B be right-versal classes in C and D, respectively. Assume
that F takes fibrant objects to fibrant objects and U takes cofibrant
objects to cofibrant objects. Then:

1. The class A’ consisting of all fibrant-cofibrant objects Y in D such

that there exists an object A € A with Y weakly equivalent to
F A, is right-versal in D.
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2. The class B’ consisting of all fibrant-cofibrant objects X in C such
that there exists an object B € B with X weakly equivalent to
UB, is right-versal in C.

LEMMA 3.4. With the same notations and assumptions as in Lemma
3.3, let

e A" be the class consisting of all fibrant-cofibrant objects Z in C
such that there exists an object M € A’ with Z weakly equivalent
to UM, and

e B” be the class consisting of all fibrant-cofibrant objects W in D
such that there exists an object N € B’ with W weakly equivalent
to FN,

Then A = A" and B = B”.

Assuming Lemmas 3.3 and 3.4, let us finish the proof of Theorem 3.2.
Since the proofs of the two parts are very similar, we only give the proof
of part 1. Let A" and A” be as in Lemmas 3.3 and 3.4. We then have

(@) (2
Acocatc(X) > A cocatp(FX) > A" cocata(UFX)

@ A cocata(UFX) @ A cocatg(X).

The inequalities (a) and (b) follow from Proposition 3.1, (c) follows from
Lemma 3.4, and (d) follows from the weak equivalences

X ~RULFX = URFQX ~ UFX.

Modulo the proofs of Lemmas 3.3 and 3.4, the proof of Theorem 3.2
is complete. O

Now we give the proofs of Lemmas 3.3 and 3.4.

Proof of Lemma 38.3. We will prove the first part; the proof of the
second part ig similar.

Let Y be an object of D that is both fibrant and cofibrant. We
must show that it has an A'-right-versal map. By using the fact that
LF: HoC — HoD is an equivalence of categories, it is not hard to see
that there exists a weak equivalence o: ¥ — FZ in D with Z fibrant
and cofibrant in C.

The following claim will finish the proof of the lemma.

Claim 1. The composite v := Foa: Y — FA, where §: Z — A is an
A-right-versal map for Z, is an A’-right-versal map for Y.

Solet 7: Y — W be a map in D with W fibrant-cofibrant and

is weakly equivalent to F'B for some object B in A. We must show
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that 7 factors through v up to homotopy. There is a weak equivalence
w: FB — W in D, since both W and F'B are fibrant and cofibrant. To
finish the proof of Claim 1, we will construct a map ¢: A — B in C with
the property that wo Fyoy ~ 7. It follows from the hypotheses that the
unit maps 7 — RULFZ and B — RULFB are isomorphisms in Ho C,
and it follows from Ken Brown’s Lemma (cf. [25, 1.1.12]) that the natu-
ral maps ez: Z — UFZ and eg: B — UF B are weak equivalences and
hence homotopy equivalences (cf. [25, 1.2.8]). By the A-right-versality
of (3, there exists a map ¢: A — B in C such that ¢ o § ~ 1, where ¢
is the composite e5' o U(w™ra™!) oez: Z — B. It is now easy to see
that the map ¢ has the desired property.

The proof of Claim 1, and hence of Lemma 3.3, is complete. O

Proof of Lemma 3.4. We will prove part 1; the proof of part 2 is
similar.

First let X be an object in A”. Then X is a fibrant-cofibrant object
in C and is weakly equivalent to UW for some object W in A’. So W is
fibrant-cofibrant in D and is weakly equivalent to F'A for some object
A in A. Thus there are weak equivalences f: X — UW in C and
g: W = FAin D (cf. 25, 1.2.8]). By Ken Brown’s Lemma the map
Ug: UW — UFA is a weak equivalence in C, and therefore so is the
composite Ugo f: X — UFA. Also, it follows from our assumption and
Ken Brown’s Lemma that there are weak equivalences

Urre. UF
A— URFQA+—" UFQA—2,UFA,
and so X is weakly equivalent to A. Hence X is in A.
Conversely, let B be in .A. Then, as above, B is weakly equivalent to
UFB. But it follows again from our assumption that FB is in A’, and
g0 B is in A”. This finishes the proof of Lemma 3.4. J

3.2. Rational LS cocategory

Unless otherwise specified, all spaces (and simplicial sets) in this sub-
section are pointed, simply connected, and have finite Q-type (i.e. finite
dimensional rational homology group in each dimension).

Before stating the results of this subsection let us briefly review the
subject of rational cocategory. The work of Felix and Halperin [14] on
rational category (i.e. caty) inspired Shal [28, 29] to introduce rational
cocategory in terms of the Quillen minimal model of a space, by using
(the dual of) one of the characterizations of rational category. He showed
that his rational cocategory is an upper-bound for Ganea’s cocategory
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for a rational space, and conjectured that equality holds in general. This
conjecture was disproved by M. Hovey [24]. The more recent work of
Doeraene [10], as far as cocategory is concerned, applies only to what
he calls JP-categories; the category Top, of pointed spaces, however,
is not a J%-category. This leaves open the question of what the right
definition of rational cocategory should be.

In this subsection we give an alternative definition of rational cocat-
egory of a space, which we denote by cocato(X), in terms of its Sullivan
minimal model, and show that our rational cocategory has many of the
properties that one would like it to have.

Here is our definition of rational cocategory:

DerIiNITION 3.5. The rational cocategory of a space X, denoted
cocato(X), is defined to be catpga. (4X).

Hereafter whenever we use the term “rational cocategory” we are
referring to Definition 3.5.

In the definition above, A is the Sullivan-de Rham functor from
pointed simplicial sets 5SS, to DGA.,, the category of augmented com-
mutative differential graded algebras over the rationals with Bousfield-
Gugenheim’s model category structure [2], and (co)catpaga, is the
(co)category in DGA, as defined in Section 1 (Definitions 1.9 and 1.25
with A = {x}).

The motivation for the above definition is the following observation.

PRrROPOSITION 3.6. The equality caty(X) = cocatpga, (AX) holds for
any space X.

REMARK 3.7. In [10, p. 259] Doeraene made a similar remark that
cato(X) = CDA*® cocat(X), where the right-hand side is cocategory
(in the sense of Doeraene) in the J%-category CDA*® of augmented
commutative c-connected differential graded algebras. However, CDA*<
is not a J-category (cf. [10, p. 257]), and so the results in [10] do not
immediately apply to LS category in CDA*® (or DGA.,).

Our main result here states that Ganea’s cocategory rationalizes to
our rational cocategory. Thus, the latter does not have the disadvantage
of Sbai’s rational cocategory.

THEOREM 3.8. Let X be a space. Then cocat(X) > cocato(X).
Moreover, equality holds if X is also a rational space. In particular,
cocat(Xq) = cocaty(X).
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Here Xq denotes the rationalization of X and cocat means Ganea’s
cocategory. Since the cocategories of a topological space and of its singu-
lar complex coincide (see Theorem 3.2), there is no ambiguity in leaving
out the subscript SS, in cocat.

As mentioned above, Hovey disproved the conjecture that Ganea’s
cocategory rationalizes to Sbai’s rational cocategory. He actually did
this by exhibiting a fibration (F — E — B) of rational spaces in which
E is an H-space, hence has cocategory 1, while F' has Sbai’s rational
cocategory > 2. Since cocategory in the sense of Ganea satisfies the
fibration property—that in a fibration the fiber has cocategory no bigger
than that of the total space plus 1-this fibration disproved Sbai’s con-
jecture. The next result shows that our rational cocategory does satisfy
the fibration property (and more).

ProrosITION 3.9 (Rational fibration property). Let £ = (FF — E —
B) be a rational fibration in the sense of Halperin [20] with B connected.
Then cocatg(F) < 1+ cocato(E). In particular, this inequality holds if
¢ Is a fibration.

REMARK 3.10. Recall that a rationally coformal space X is a rational
space such that 7.(2X) ® Q equipped with zero differential has the
same Quillen minimal model as X. Sbai [28, 29] showed that when
X is rationally coformal, his rational cocategory of X coincides with
cocat(X), and hence, by Theorem 3.8, also with our cocatg(X).

Now we give the proofs of the results above.

Proof of Proposition 3.6. Recall from [14] that the rational category
of X is the least integer n > 0 (possibly oo) such that the Sullivan
minimal model AV of X is a homotopy retract of the rational Ganea
space I', (AV'), which has the rational homotopy type of the space B,QX
in the Milnor filtration of BQX. The proposition is now an immediate
consequence of the fact that the functor M: 8S, — DGA., defined as
A followed by functorial cofibrant replacement, takes rational fibrations
in 85, to cofibrations in DGA,. |

Proof of Theorem 3.8. First we note that if two spaces X and Y have
the same rational homotopy type, then cocato(X) = cocatg(Y) (see
Proposition 1.26).

Now we prove the first assertion of Theorem 3.8.

LEMMA 3.11. Let X be a space. Then cocat(X) > cocatg(X).
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Proof. Consider Ganea’s fiber-cofiber construction (GFC) for X:

7

X —2 5 BX

'/ o

a0 ’ BOX
in which (X — FpX — ByX) = (X — CX — ZX), each sequence
Cn: (X — FpX — B,X) is a cofibration sequence, and each sequence
En: (Fp1 X — F, X — BpX) is a fibration sequence. Thus, in partic-
ular, cocat(X) is the smallest integer n for which f, has a homotopy
retraction.

We observe the following:

Clatm 1. Every space in the diagram (GFC) is simply-connected.
Claim 2. For n > 0, (F,X)q =~ FrXq and (B,X)q ~ B.Xq.

Claim 3. Every space in the diagram (GFC) has finite Q-type.

Claim 4. M(GFC) is precisely the diagram that defines catpga. (AX).

Assuming these claims for the moment, notice that a homotopy re-
traction of f, yields a homotopy section of M f,,, which by Claim 4 im-
plies cocate(X) = catpga.(AX) < n, completing the proof of Lemma
3.11.

To prove Claim 1, note that in any cofibration sequence A — X —
X/A the homotopy fiber Fib(X — X/A) is A-cellular (cf. [4, 5.4(2)]).
Thus each F,X is simply-connected, since F,X = Fib(F,1X —
(Fr-1X)/X). A more elementary way to see this, as the referee sug-
gests, is to use the Blakers-Massey Theorem. That the B,X are all
simply-connected follows from the long exact homotopy sequence of &,.
This finishes the proof of Claim 1.

Claim 2 follows from Claim 1 and ([31, Section 2.9, Proposition 2.4] or
[21, Chapter II, Corollaries 1.10 and 1.11]), which says that for simply-
connected spaces rationalization preserves fibration and cofibration se-
quences.

Claim 3 is proved by induction on 7, the case n = 0 being trivial
since FpX = CX =~ x and BpX = ¥X. Suppose F,_1X and B, 1.X
have finite Q-type. By Claim 2 we only neced establish that F,,Xq and
B, Xq have finite type integral homology. For F,, Xq this follows from
induction hypothesis, the long exact homotopy sequence of the fibration
(En-1)q and Serre’s C-theory [30]. The case for B, Xq now follows from
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the long exact homology sequence of the cofibration sequence (Cn)q.
This finishes the induction and the proof of Claim 3.

Finally, Claim 4 is true since M (FpX) ~ Q, MC, is a fibration
sequence (cf. [2, p. 82]), and M¢E,, is a cofibration sequence because by
Claims 1 and 3 and [19, 20.3], &, is a rational fibration.

This finishes the proof of Lemma 3.11. O

The second assertion of Theorem 3.8 follows from the following
Lemma.

LemMmAa 3.12. Let X be a rational space. Then cocat(X) <
cocaty(X).

Proof. We may assume without loss of generality that X is a Kan
complex, since the map X —— Sing|X| induces a weak equivalence
A(Sing | X]) — A(X). We claim that for Y € DGA,, one has the
inequality

cocat(FY) < catpga, (Y),
where F': DGA, — 88, is the functor defined by Bousfield and Gugen-
heim [2]. To see this, observe that the functor F' takes weak equivalences
between cofibrant algebras to weak equivalences between Kan complexes
and takes pushouts to pullbacks. Therefore, the claim follows from the
Homotopy Pullback and Homotopy Pushout Properties (cf. Theorems
2.3 and 2.4).

Now since X is a rational space, there is a weak-equivalence X —
FMX (cf. [2, 10.1]). Thus, with ¥ = M X in the inequality above it
follows that cocat(X) = cocat(FMX) < catpga. (MX) = cocaty(X).

This finishes the proof of Lemma 3.12. 0

The proof of Theorem 3.8 is now complete. |

Proof of Proposition 3.9. Recall from [20] that a sequence &: F 4
E 5 B of path-connected spaces is a rational fibration if the map 7 o4
sends F to the base point of B and in the diagram () below,

AB) 27, am) 29, A

H ~ &
A(B) — A(B) ® AV — AV

where  is the minimal model of A(m), the induced map « is a weak
equivalence.
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Now by [1, 1.8.18] the bottom row of the diagram (*) is a cofibration
in DGA,. Thus it follows that

cocaty(F') = catpga, (A(F)) = catpga, (AV)

<1+ catpga, (A(B) ® AV) = 1 4 cocaty(E).
This proves the first assertion of Theorem 3.9.
The second assertion follows from [18] or [19, 20.6], which says that
under the stated hypotheses € is a rational fibration.
This completes the proof of Proposition 3.9. |

3.3. Further applications

In this final subsection we give two more results concerning our gen-
eralized (co)category, both of which are applications of the Homotopy
Pullback and Pushout Properties. Our first result here is a generaliza-
tion of the corresponding classical result of Ganea [17].

THEOREM 3.13. Let C be a pointed proper model category in which
the weak equivalences are closed under finite products, and let A be a
right-versal class in C that is closed under finite products. Then for any
objects X1,..., X, in C we have

Acocata(Xy x -+ x Xp) = max (Acocato(X;): 1 <i<mn).

This theorem has an Eckmann-Hilton dual in which products, right-
versal, and A cocat are replaced by, respectively, coproducts, left-versal,
and A cat throughout. Its proof is strictly dual to that of Theorem 3.13.
We will not state it explicitly.

Proof of Theorem 3.13. We will omit the subscript C in this proof,
since C is the only model category under consideration. It is clearly
sufficient to prove the theorem for n = 2; the general case follows by
an induction argument. So let X and Y be objects in C and write
m = Acocat(X), n = Acocat(Y). Since both X and Y are retracts of
X xY, the retract property (Theorem 1.16) shows that both A cocat(X)
and A cocat(Y') are less than or equal to A cocat(X x V).

It remains to show that A cocat(X x Y) is no bigger than the max-
imum of A cocat(X) and A cocat(Y'). If either m or n is oo, then there
is nothing to prove. So we may assume that both m and n are finite.
Note that to obtain the desired inequality we may replace X and Y
by, respectively, @QRX and QRY. In the case that either m or n is
zero (or both), the proof is very easy and we omit it. So we suppose
that both m and n are positive and finite. There exists an object Z
(resp. W) of which QRX (resp. QRY) is a homotopy retract and
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such that Z (resp. W) is weakly equivalent to the pullback of a dia-
gram (Zg Lz, & Zl) (resp. (Wg LWy & Wl)) such that p (resp.
r) is a fibration, Acocat(Z1) = m — 1 (resp. Acocat(Wy) = n — 1)
and Acocat(Zs) = 0 = Acocat(Wz). Thus QRX x QRY is a homo-
topy retract of Z x W, which by our hypothesis is weakly equivalent to
lim (22 s Wy X5 20 x Wo &2 74 x Wl) in which A cocat(Zy x Wa) =
0, p x r is a fibration, and Acocat(Z; x Wi) < max{m — 1,n — 1} by
induction hypothesis (on m + n). Thus, it follows from the Homotopy
Pullback Property (Theorem 2.3) that

Acocat(QRX x QRY) < 1+ max{m — 1,n — 1} = max{m,n}.
This completes the proof of Theorem 3.13. O

Qur last application of the Homotopy Pullback and Pushout Proper-
ties is the following result. We use the notation map, (—, —) for (pointed)
homotopy function complex (see [22]). Recall that SS. denotes the cat-
egory of pointed simplicial sets.

THEOREM 3.14. Let C be a simplicial pointed proper model category,
let A and B be, respectively, left and right-versal classes in C and let
X be a cofibrant object and Y be a fibrant object in C. Let C be a
right-versal class in S8, such that:

e map,(A,Y) € C for every object A that is weakly equivalent to
some object in A;

e map, (X, B) € C for every object B that is weakly equivalent to
some object in B.

Then we have
C cocatgg, map, (X,Y) < min (Acatc(X), Bcocatc(Y)).

Proof. We first consider the inequality involving A cat(X) (the sub-
script C is omitted). Write m = A cat(X). The case m = 0 follows from
the assumption and the case m = co is trivial. So we now do induction
on m > 0; the case m = 0 is already verified. Suppose m > 0. By
the Homotopy Pushout Property, Theorem 2.4, there exists a fibrant-
cofibrant object Z of which QRX is a homotopy retract and 7 is weakly

equivalent to the homotopy pushout Z’ of the diagram (Zg £ Zn 4 Zl)

in which p is a cofibration, Z5 is weakly equivalent to some object in A,
and Acat(Z;) = m — 1. Applying the functor map,(—.,Y) to the above
homotopy pushout square, it is not difficult to see that the following
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homotopy pullback diagram in SS, (cf. [11, 62.1]),

ma‘p*(Z,J Y) ——+map, (Zlu Y)

l l

map, (Z27 Y) — map*(ZO: Y):

together with Theorem 2.3 yield the desired inequality. The proof of the
inequality involving B cocat(Y) is very similar to the argument above,
so we omit the details. D
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