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CELLULAR EMBEDDINGS OF
LINE GRAPHS AND LIFTS

JIN Hwan Kim

ABSTRACT. A cellular embedding of a graph & into an orientable
surface § can be considered as a cellular decomposition of § into
0-cells, 1-cells and 2-cells and vise versa, in which (-cells and 1-cells
form a graph G and this decomposition of 8 is called a map in 8§
with underlying graph . For a map M with underlying graph G,
we define a natural rotation on the line graph of the graph G and we
introduce the line map for M. We find the genus of the supporting
surface of the line map for a map and we give a characterization
for the line map to be embedded in the sphere. Moreover we show
that the line map for any lift of a map M is map-isomorphic to a
lift of the line map for M.

1. Introduction and preliminaries

The concept of a line graph was first appeared in the paper by Whit-
ney [6] and the name line graph was introduced in Harray and Norman
[4]. Various properties and some generalizations related to line graphs
have been much studied until now. Recently a relationship between a
covering of the line graph of a graph & and the line graph of a covering
of G was studied [1]. In this paper we define a line map for a map M by
introducing a natural rotation on the line graph of the underlying graph
of M. We find the genus of the supporting surface of the line map for a
map. Moreover we show that line maps for derived maps of a map are
map-isomorphic to lifts of the line map of the given map. This implies
that any line graph of a covering of a graph G covers the line graph of
G.
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Throughout this paper, all graphs are assumed to be simple, fi-
nite, and connected and all surfaces mean compact and connected 2-
dimensional orientable manifold without boundary.

Let GG be a graph with vertex set V(@) and edge set E(G). Every edge
in E(G) is represented as a set consisting two vertices in V(). Each
edge {u,v} gives rise to a pair of two directed edges z = (u,v),z7 ! =
(v,u) with opposite directions; z = (u,v) joins from u to v and the
inverse z7! = (v,u) joins from v to u. These directed edges will be
called arcs (or darts). The pair {z,271} also represents the (undirected)
edge {u,v}. Let D(G) be the set of all arcs of a graph G and call it the
arc set of G. Let D7 (v) be the set of arcs in D(G) emanating from v
and D~ (v) the set of arcs in D(G) terminated at v.

For any arc z incident to (that is, terminated at or initiated at) a

vertex v, let

DL if x € D¥(v)
Uzt ifze DT(w).

Let B(G) be a set of arcs which contains only one arc from each pair
of {x,z~1}, call it a controlling arc set of G, and let D(v) denote the set
of arcs in D(@) incident to a vertex v in G. In treating line graphs and

line maps, we shall use a fixed controlling arc set.
For z € D(@), let

L if z € D(Q)
Tzt if:cgéﬁ(G).

Then the sets D*(v) and D(v) are in 1-1 correspondence via z — %,
and so the number |D(v)| of arcs in D(v) is the degree of v, denoted by
deg(v).

Any graph G can be regarded as a topological space in the following
sense: By regarding the vertices of (¢ as O-cells and the edges of G as
1-cells, the graph G can be identified with a finite 1-dimensional CW-
complex in the Euclidean 3-space R®. An embedding of a graph G in a
surface S is a topological embedding ¢+ : G — S. If every component of
S — (@), called a region, is homeomorphic to an open disk in the Eu-
clidean plane, then the embedding ¢ : G — S is called a 2-cell or cellular
embedding. A map in an orientable surface S is a cellular decomposi-
tion of § into 0-cells, 1-cells and 2-cells which form a graph, called its
underlying graph. We shall treat maps in which the underlying graph is
simple. A map in an orientable surface § with underlying graph & can
be considered as a cellular embedding 2 of G into S and vice versa. A
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local rotation p, at v in G is a cyclic permutation of DT (v). A rotation
p for a graph G is a permutation of the arc set D(G) which may be de-
composed into |V (G)| cycles p, in which p, permutes the arcs in D% (v)
cyclically and fixes the arcs except arcs in D (v), where |V (G)| denote
the number of vertices in . The permutation A of D(G) swapping two
opposite arcs on every edge in G is called the arc-reversing involution.

As usual, we describe a map by means of rotation p and arc-reversing
involution A which are permutations of the arc set D(G) of G as above.
The permutation p is a rotation which at each vertex v cyclically per-
mutes the arcs in D1 (v) in accordance with the orientation of the surface
so that for each arc z in DT (v), the arc p(z) is the clockwise next arc
in D" (v) on the surface. It is known that a rotation p on G determines
a 2-cell embedding of GG into an orientable surface S,. Conversely ev-
ery 2-cell embedding of (G into an orientable surface S, gives rise to a
rotation p on G associated with it ([5]). The regions of the 2-cell embed-
ding associated to a rotation p for G are given by the disjoint cycles in
the decomposition of p o A as the product of disjoint cycles. A map M
having underlying graph G, arc set D(G), rotation p and arc-reversing
involution A will be denoted by (D(G), {p, \}).

Let M = (D(G), (p, ) and M’ = (D(G’"), (', X)) be two maps.

A graph-homomorphism f from G to G’ is a mapping f : D(G) —
D(@F') such that f(A(z)) = A'(f(z)) for any z € D(G), and f(z), f(y)
have the same initial vertex for any two arce z, ¥ with the same initial
vertex. A bijective graph-homomorphism from G onto G’ is called a
graph-isomorphism from G to G’. A graph-homomorphism f from G
onto G is a covering projection if for every vertex v of GG, f maps D (v)
bijectively to DT (f(v)). The domain graph G of f is called a covering
(graph) of G’ and G is said to be covered by G. Fibers of any two
vertices and arcs in G are of the same cardinality.

A map-homomorphism f from M to M’ is a mapping f : D(G) —
D(G') such that f(A(z)) = X(f(z)) and f(p(z)) = p'(f(z)) for any
z € D(G). A bijective map-homomorphism from M onto M’ is called a
map-isomorphism from M to M’. Note that any map-homomorphism
is a graph-homomorphism.

Let G be a graph with arc set D(G) and let Sk denote the symmetric
group of {1,--- ,k}. A mapping ¢ : D(G) — Sy is a permutation voltage
assignment on G if ¢(z71) = ¢(z)~! for each arc 2 € D(G). The graph
G endowed with a permutation voltage assignment ¢ gives rise to a new
graph G, called a derived graph or a lift of G with respect to ¢. The
vertex set of G is defined to be the set V(G?) = V(G) x {1,--- ,k}
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and a vertex (v,7) in V(G?) will be denoted as v;. The arc set D(G?)
of G? is defined to be the set D(G?) = D(G) x {1,--- ,k} and an arc
(z,7) in D(G?®) will be denoted as z;. An arc z; in D(G®) joins u; to
Vg(z)() if # joins u to v and D*(vy) = {25z € D*(v)}. It is known that
every covering of a given graph arises from some permutation voltage
assignment in a symmetric group ([3]).

The rotation p® on the derived graph G¢ is defined by pffj (z;) =
(py(z)); for any z; € D¥(v;). The arc-reversing involution 2% on the
derived graph G¢ is defined by A®(z;) = A(%)g(x)(;) for any z; € D(G?).
The map M? = (D(G?), (p?, %)) will be called the derived map or the
(map-)lift of a map M = (D(G), {p,\)) with respect to ¢. The natural
projection g from M? to M is defined by p(z;) = x for any z; € D(G?).
Then p is a map-homomorphism M? onto M and a covering projection
from G¢ onto G.

2. Line graphs and line maps

In this section we introduce a natural rotation on the line graph of
the underlying graph and define the line map for a given map M. Our
work will be treated together with fixed controlling arc set.

Let M = (D(G),{p,\)) be a map with controlling arc set D(&).
Define a cyclic permutation p, of ﬁ(v) via

pu(z) = pu(v7)
for z € D(v).

For z € D(G), let Z denote the pair {z,z~1}. The line graph L(G) of
a graph G has the vertex set V' (L((@)) consisting of T where = € D(Q),
and the arc set D(L(G)) consisting of the ordered pairs (z,y) where
z,y are in ﬁ(G) and z,y have a unique common vertex in V/(G). For
z € D(@), D* (@) = {{z,y) € D(L(G))ly € D(G)} (cf. Figure 1).

Now in order to give a line map L(M) = (D(L(G)), (L(p), L(X))) for
a map M = (D(G), (p, A)), we define the arc-reversing involution L(})
and a natural rotation L{p) on L(G).

The arc-reversing involution L(\) on L(G) is given by

LN z,y) = (¥, 2)

for any arc (z,y) € D(L(G)).
A natural rotation L(p) on L(G) is represented as the product of
cyclic permutations L(p)z on D¥(Z), x € D(G), defined as follows; if =
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is an arc in D(G) joining from u to v, define

(5,5uly)) ify € Dla) and fuly) # 2

o wa@) ity e D) and puly) —
HOR@I =3 0 5,0)) ity € Do) and uly) # 0
(0, 5ul@)) iy & Do) and puly) = o

Figure 1. z,v, z,a,b and ¢ are arcs in f)(G) and dotted arrows
represent arcs in D1 (z)

For a permutation voltage assignment ¢ : D(G) — Sg, the derived
map M? = (D(G?), (0?, %)) of M is given. Let D(G%) = D(Q) x
{1,--- ,k} be the controlling arc set for the derived map M? and let
ﬁ(vj) = {zplz € ﬁ(v)}, where

K7 if z e Dt (v)
Ty = . o if D (i
Tp(p-1)() LT = (U)
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Define a cyclic permutation p?,, on ﬁ(vj) via

p?u; (1) = Bu(@)py
for any x; € D(v;).
For z; € D(G?), let 77 = {:z:j,:z:;(lm)(j)}. Then the line map L(M?)
for M® has the vertex set V(L(G?)) = {Tj|z; € D(G%)} and the arc set

D(L(G%)) = RETRIIEIRTRS D(G¢), and x;,y; are adjacent}.
The arc-reversing involution L(A?) on L(M?) is defined by

for any arc (z;,y1) € D(L(G?)).
For z; € D(G?), D+(xJ) = {{z;,y)|y € D(G), ; is adjacent to z;}.
A cyclic permutation L(p )mj on D (z;) is given as follows; If z is an

arc in ﬁ(G) joining from u to v, then z; is an arc in E(G¢) joining from
u; to vs where s = ¢(x)(j), and

<wg,p¢’ w)) ifyzel?(uy) andp¢ ) # z;
L(o)a((25, 1)) — <$.7pv5($])> if y € D(uy) aLnd/ﬂb](:e/z) x;
PRT@ID =N ) Brld) it € Do) and 2B () #
(27, 0%, (27)) ity € D(vs) and p3,, (u1) = z;

for any (z;,y) € DT (Z5).

3. Genus and lift of line maps

In this section, we find the genus of the line map for a map and we
show that line maps for lifts of a map M are map-isomorphic to lifts of
the line map for M.

We gives a lemma relative to a special map on a complete graph,
which will be used in finding the genus of the line map for a map.

Let K, be a complete graph with vertices vi,vg, -+ ,v,. Fach edge
{v.,v,} in K, gives rise to a pair of arcs (i,7),(j,7) where (7,7) is
an arc joining from v; to v;. Thus D(K,) is the set {{i,j)]:,7 =
1,2,--- ,nandi # j} and DV (v;) istheset {{(i,7)| j =1,2,--- ,nand j #

LEMMA 3.1. Let w be a permutation [ [} wsy, of D(Ky) in which oo,
is the cyclic permutation ((3,1) -+~ (¢, — 1){¢,7 + 1) --- (i, n)) of DT (v;).
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Then w gives rise to a map K, that has %] regions, in which L”—Ez |
regions are 2n—sided and the remains(one or two regions) are n-sided.

Proof. The result is directly from checking the cycles in the decom-
position of @ o A as the product of disjoint cycles, where X is a full
involution []; ;< ;jcn ({6:7), (4,9)) of D(Ky). ]

THEOREM 3.2. Let M = (D(G),{p,\)) be a map in which the genus
of the supporting surface is g, and L(M) the line map for M. Then the
genus of the supporting surface of L(M) is

g+ % S {deg(v)? - 3deg(v) - Ldeg( ) +2).
veV(E)

Proof. The number of vertices of L(M) is |D2G)[ and the number of
edges of L(M) is %EUEV(G’) deg(v)(deg(v) — 1). From the definition of
L(p), each region in. M determines a region in L(M). For each vertex
v in G, by Lemma 3.1, the arcs incident to v give rise to fd—e%(—”)-] —-1=
[d—eg(”il-_] regions in L(M). Hence the number of regions of L(M) is

(M) + 2 evia) Li“g—(”)—lj, where r(M) is the number of regions in a

map M. From the Euler formula, we see that the genus of the supporting
surface of L(M) is given as above. g

For a map M = (D(G), (p,\)), iterated line maps are inductively
defined by LO(M) = M, L}(M) = L(M) and L™ (M) = L(L"(M))
for n € N with L™(M) not empty graph. Let K, , denote the complete
bipartite graph on sets of m vertices and n vertices.

COROLLARY 3.3. Given a map M in which the underlying graph G
is connected and is not empty.
(1) L({M) is embedded in the sphere if and only if M is embedded in
the sphere and G contains no vertex v with deg(v) > 4.
(2) L™(M) is embedded in the sphere for every n € N with L""1(M)
not empty graph if and only if G is a path or a cycle, or K 3.

Proof. (1) If M is not embedded in the sphere, then L(M) is not em-
bedded in the sphere by Theorem 3.2. We suppose that M is embedded
in the sphere. The term deg(v)? — 3 deg(v 2Lﬂ3’-)—J + 2 in theorem
3.2 equal to

—_
[= 9
@
as
—
<
~—
[S)
b

(deg(v) — 1)(deg( ) —3) if deg(v) is odd,
- if deg(v) is even.
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Hence L(M) is embedded in the sphere if and only if G contains no
vertex v with deg(v) > 4.

(2) If a map M has a path or a cycle, or Ky 3 as the underlying
graph G, then L"(M) is evidently embedded in the sphere for every
n € N with L" (M) not empty graph. For the converse, we suppose
that the underlying graph G of a map M is not a path or a cycle, or
K1 3. Then G has an edge a with deg(u)+deg(v) > 5, where u, v are the
incident vertices of ¢ and so L(G) has a connected subgraph consisting
of a 3-cycle and a cut-edge. Hence there exists an edge e in L?(G) such
that the sum of degrees of the incident vertices of e is equal to or greater
than 6. Therefore L3((7) contains a vertex w having deg(w) > 4. Hence
from (1), L3(M) is not embedded in the sphere. O

THEOREM 3.4. The line map of any lift for a map M is map-isomorphic
to a lift of the line map for M.

Proof. Let M = (D(G),{p,A)) be a map with controlling arc set
D(@) and ¢ : D(G) — Sp a permutation voltage assignment on G.
Let L(M) = (D(L(®)), (L(p), L(\))) be the line map for M and M? =
(D(G?), (p®,A?)) the derived map of the map M, and L(M?) =
(D(L(G?)), (L(p?), L(A?) }) the line map for the map M?, which are
given in section 2.

Define ¢ : D(L(G)) — Sk as follows. For (z,y) € D(L(G)), where
z,y € ﬁ(G) has a unique common. vertex w, one of the following 4 cases
holds;

case 1 :i(z) = w =1i(y), case 2 :i(z) = w = t(y),

case 3:t(z) = w =1(y), case 4: t(z) = w = t(y),
where t(z) means the terminal vertex of 2 and i(z) means the initial
vertex of arc z. Let

j for case 1,
L ew™hH() for case 2,
v({z,y)) () = o(2)() for case 3,

Sy~ (d(z)(4)) for case 4.

Then ¥ ({y, z)) = ¥({z,y)) ™! and 9 is a permutation voltage assignment
on L(G).

Let L(M)¥ = (D(L(G)¥), (L(p)¥, L(A)?)) be the lift of the line map
L(M) with respect to 1. The vertex set and arc set of L(G)? are given
as
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D(L(G)?) = {(=.y);l{z,y) € D(L(G)),§ € {1,2,++ , k}}.

Let D™(Z;) = {(z,y);|{z,y) € DT(Z)}. The arc-reversing involution
L(\)¥ and the rotation L( )¥ are given as

L(p)z, ((z,9);) = (L(o)a({@, 9))) ;
Now define F : D(L(G)¥) — D(L(G®)) b
F({z,9)5) = {3, Yoo ) -
Then F is a bijection from D(L(G)¥) onto D(L(G®)) and

FLN(z9)5) = F(Y2)wwi)
<yw<<cc INOIEZ),

L) (25, Ypzan ()
= L) (F((z,9)5))-

I

Finally, we show that F(L(p)w (2, v);)) = L(p®)z (F((z,y);)). To
do it we let u = i(z), v = t(x) and s = o&(z)(j). Here we consider the
4th case, that is, t(z) = v = t(y). In this case, yy(@y)() = Ysy-1)(s) €

D(vs). If By(y) # =, then p%, (Yy(za))) # @5 and

F((Tps(e,u)),)

F(L(p)%, (@,9)))
(<5C Pv( )>J)
V(=

(@355 50 (W) (250 N (G))
_ V%mxn> if i(u(y)) =v
(€5, oW~y I t(Bu(y)) =v
= <$_7:pv y)[s>

(xg,p‘% (yis))
= {zj, P vs Wo(y=1)(s)))
? . W) (7))
Kl

(z;
L( ) (<xj,yw(<£ NG
L{(0®)z ( (z,1)5))-

i
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If 5. (y) = =, then p?, (Yy(zy) () = @5 and

F(Z(p% (@9)5) = F((L)=lzv);)
= (25, Pul@)y(apu e9))
_ {<wj,'p*u(x>j> if i(pu(z)) = u
(@5, Pu(@)p(u @) I t(Pu(z)) = u

|
—~
B
2)
-
&
—
B
~—
~

L(p®)z5 ({5, Y (o) ()
= L(p*)z(F((z,y)))-
We can check it similarly for the remaining cases. Therefore L(M)¥
is map-isomorphic to L(M?) by the mapping F. O

Since any map-isomorphism is a graph-isomorphism on underlying
graphs, we have the following result.

COROLLARY 3.5. Any line graph of a covering graph of a graph G
covers the line graph of G.

References

[1] D. Archdeacon, J. Lee, and M. Y. Sohn, Line graphs of covering gpaphs are cover
graphs, Bull. Korean Math. Soc. 37 (2000), 487-491.

2] J. L. Gross and T. W. Tucker, Topological graph Theory, John Wiley and Sons,
New York, 1987.

3] , Generating all graphs by permutation wvollage assignments, Discrete
Math. 18 (1977), 273-283.

[4] F.Harary and R.. Z. Norman, Some properties of line digraphs, Rend. Circ. Math.
Palermo 9 (1960), 161-168.

(6] 8. Stahl, Generalized embedding schemes, J. graph Theory 2 (1978), 41-52.

[6] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254.

DEPARTMEMT OF MATHEMATICS EDUCATION, YEUNGNAM UNIVERSITY, KYONGSAN
712-749, KOREA
E-mail: kimjh@yu.ackr



