CELLULAR EMBEDDINGS OF LINE GRAPHS AND LIFTS

JIN HWAN KIM

ABSTRACT. A cellular embedding of a graph G into an orientable surface $\mathbb S$ can be considered as a cellular decomposition of $\mathbb S$ into 0-cells, 1-cells and 2-cells and vise versa, in which 0-cells and 1-cells form a graph G and this decomposition of $\mathbb S$ is called a map in $\mathbb S$ with underlying graph G. For a map $\mathcal M$ with underlying graph G, we define a natural rotation on the line graph of the graph G and we introduce the line map for $\mathcal M$. We find the genus of the supporting surface of the line map for a map and we give a characterization for the line map to be embedded in the sphere. Moreover we show that the line map for any lift of a map $\mathcal M$ is map-isomorphic to a lift of the line map for $\mathcal M$.

1. Introduction and preliminaries

The concept of a line graph was first appeared in the paper by Whitney [6] and the name line graph was introduced in Harray and Norman [4]. Various properties and some generalizations related to line graphs have been much studied until now. Recently a relationship between a covering of the line graph of a graph G and the line graph of a covering of G was studied [1]. In this paper we define a line map for a map \mathcal{M} by introducing a natural rotation on the line graph of the underlying graph of \mathcal{M} . We find the genus of the supporting surface of the line map for a map. Moreover we show that line maps for derived maps of a map are map-isomorphic to lifts of the line map of the given map. This implies that any line graph of a covering of a graph G covers the line graph of G.

Received June 28, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 05C10.

Key words and phrases: graph. cellular embedding, permutation voltage assignment, lift, rotation, map, graph-isomorphism, map-isomorphism, line graph, line map.

Throughout this paper, all graphs are assumed to be simple, finite, and connected and all surfaces mean compact and connected 2-dimensional orientable manifold without boundary.

Let G be a graph with vertex set V(G) and edge set E(G). Every edge in E(G) is represented as a set consisting two vertices in V(G). Each edge $\{u,v\}$ gives rise to a pair of two directed edges $x=\langle u,v\rangle, x^{-1}=\langle v,u\rangle$ with opposite directions; $x=\langle u,v\rangle$ joins from u to v and the inverse $x^{-1}=\langle v,u\rangle$ joins from v to u. These directed edges will be called arcs (or darts). The pair $\{x,x^{-1}\}$ also represents the (undirected) edge $\{u,v\}$. Let D(G) be the set of all arcs of a graph G and call it the arc set of G. Let $D^+(v)$ be the set of arcs in D(G) emanating from v and $D^-(v)$ the set of arcs in D(G) terminated at v.

For any arc x incident to (that is, terminated at or initiated at) a vertex v, let

$$_{v}x = \begin{cases} x & \text{if } x \in D^{+}(v) \\ x^{-1} & \text{if } x \in D^{+}(v). \end{cases}$$

Let $\widehat{D}(G)$ be a set of arcs which contains only one arc from each pair of $\{x, x^{-1}\}$, call it a *controlling arc set* of G, and let $\widehat{D}(v)$ denote the set of arcs in $\widehat{D}(G)$ incident to a vertex v in G. In treating line graphs and line maps, we shall use a fixed controlling arc set.

For $x \in D(G)$, let

$$\widehat{x} = \begin{cases} x & \text{if } x \in \widehat{D}(G) \\ x^{-1} & \text{if } x \notin \widehat{D}(G). \end{cases}$$

Then the sets $D^+(v)$ and $\widehat{D}(v)$ are in 1-1 correspondence via $x \mapsto \widehat{x}$, and so the number $|\widehat{D}(v)|$ of arcs in $\widehat{D}(v)$ is the degree of v, denoted by $\deg(v)$.

Any graph G can be regarded as a topological space in the following sense: By regarding the vertices of G as 0-cells and the edges of G as 1-cells, the graph G can be identified with a finite 1-dimensional CW-complex in the Euclidean 3-space \mathbb{R}^3 . An embedding of a graph G in a surface \mathbb{S} is a topological embedding $i:G\to\mathbb{S}$. If every component of $\mathbb{S}-i(G)$, called a region, is homeomorphic to an open disk in the Euclidean plane, then the embedding $i:G\to\mathbb{S}$ is called a 2-cell or cellular embedding. A map in an orientable surface \mathbb{S} is a cellular decomposition of \mathbb{S} into 0-cells, 1-cells and 2-cells which form a graph, called its underlying graph. We shall treat maps in which the underlying graph is simple. A map in an orientable surface \mathbb{S} with underlying graph G can be considered as a cellular embedding i of G into \mathbb{S} and vice versa. A

local rotation ρ_v at v in G is a cyclic permutation of $D^+(v)$. A rotation ρ for a graph G is a permutation of the arc set D(G) which may be decomposed into |V(G)| cycles ρ_v in which ρ_v permutes the arcs in $D^+(v)$ cyclically and fixes the arcs except arcs in $D^+(v)$, where |V(G)| denote the number of vertices in G. The permutation λ of D(G) swapping two opposite arcs on every edge in G is called the arc-reversing involution.

As usual, we describe a map by means of rotation ρ and arc-reversing involution λ which are permutations of the arc set D(G) of G as above. The permutation ρ is a rotation which at each vertex v cyclically permutes the arcs in $D^+(v)$ in accordance with the orientation of the surface so that for each arc x in $D^+(v)$, the arc $\rho(x)$ is the clockwise next arc in $D^+(v)$ on the surface. It is known that a rotation ρ on G determines a 2-cell embedding of G into an orientable surface \mathbb{S}_g . Conversely every 2-cell embedding of G into an orientable surface \mathbb{S}_g gives rise to a rotation ρ on G associated with it ([5]). The regions of the 2-cell embedding associated to a rotation ρ for G are given by the disjoint cycles in the decomposition of $\rho \circ \lambda$ as the product of disjoint cycles. A map \mathcal{M} having underlying graph G, arc set D(G), rotation ρ and arc-reversing involution λ will be denoted by $(D(G), \langle \rho, \lambda \rangle)$.

Let $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$ and $\mathcal{M}' = (D(G'), \langle \rho', \lambda' \rangle)$ be two maps.

A graph-homomorphism f from G to G' is a mapping $f:D(G)\to D(G')$ such that $f(\lambda(x))=\lambda'(f(x))$ for any $x\in D(G)$, and f(x),f(y) have the same initial vertex for any two arcs x,y with the same initial vertex. A bijective graph-homomorphism from G onto G' is called a graph-isomorphism from G to G'. A graph-homomorphism f from G onto G' is a covering projection if for every vertex f0 of f1 maps f2 bijectively to f3. The domain graph f4 of f5 is called a covering (graph) of f6 and f7 is said to be covered by f6. Fibers of any two vertices and arcs in f6 are of the same cardinality.

A map-homomorphism f from \mathcal{M} to \mathcal{M}' is a mapping $f:D(G)\to D(G')$ such that $f(\lambda(x))=\lambda'(f(x))$ and $f(\rho(x))=\rho'(f(x))$ for any $x\in D(G)$. A bijective map-homomorphism from \mathcal{M} onto \mathcal{M}' is called a map-isomorphism from \mathcal{M} to \mathcal{M}' . Note that any map-homomorphism is a graph-homomorphism.

Let G be a graph with arc set D(G) and let S_k denote the symmetric group of $\{1, \dots, k\}$. A mapping $\phi : D(G) \to S_k$ is a permutation voltage assignment on G if $\phi(x^{-1}) = \phi(x)^{-1}$ for each arc $x \in D(G)$. The graph G endowed with a permutation voltage assignment ϕ gives rise to a new graph G^{ϕ} , called a derived graph or a lift of G with respect to ϕ . The vertex set of G^{ϕ} is defined to be the set $V(G^{\phi}) = V(G) \times \{1, \dots, k\}$

and a vertex (v,j) in $V(G^{\phi})$ will be denoted as v_j . The arc set $D(G^{\phi})$ of G^{ϕ} is defined to be the set $D(G^{\phi}) = D(G) \times \{1, \dots, k\}$ and an arc (x,j) in $D(G^{\phi})$ will be denoted as x_j . An arc x_j in $D(G^{\phi})$ joins u_j to $v_{\phi(x)(j)}$ if x joins u to v and $D^+(v_j) = \{x_j | x \in D^+(v)\}$. It is known that every covering of a given graph arises from some permutation voltage assignment in a symmetric group ([3]).

The rotation ρ^{ϕ} on the derived graph G^{ϕ} is defined by $\rho^{\phi}_{v_j}(x_j) = (\rho_v(x))_j$ for any $x_j \in D^+(v_j)$. The arc-reversing involution λ^{ϕ} on the derived graph G^{ϕ} is defined by $\lambda^{\phi}(x_j) = \lambda(x)_{\phi(x)(j)}$ for any $x_j \in D(G^{\phi})$. The map $\mathcal{M}^{\phi} = (D(G^{\phi}), \langle \rho^{\phi}, \lambda^{\phi} \rangle)$ will be called the derived map or the (map-)lift of a map $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$ with respect to ϕ . The natural projection \wp from \mathcal{M}^{ϕ} to \mathcal{M} is defined by $\wp(x_j) = x$ for any $x_j \in D(G^{\phi})$. Then \wp is a map-homomorphism \mathcal{M}^{ϕ} onto \mathcal{M} and a covering projection from G^{ϕ} onto G.

2. Line graphs and line maps

In this section we introduce a natural rotation on the line graph of the underlying graph and define the line map for a given map \mathcal{M} . Our work will be treated together with fixed controlling arc set.

Let $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$ be a map with controlling arc set $\widehat{D}(G)$. Define a cyclic permutation $\widehat{\rho}_v$ of $\widehat{D}(v)$ via

$$\widehat{
ho}_v(x) = \widehat{
ho_v(_v x)}$$

for $x \in \widehat{D}(v)$.

For $x \in \widehat{D}(G)$, let \overline{x} denote the pair $\{x, x^{-1}\}$. The line graph L(G) of a graph G has the vertex set V(L(G)) consisting of \overline{x} where $x \in \widehat{D}(G)$, and the arc set D(L(G)) consisting of the ordered pairs $\langle x, y \rangle$ where x, y are in $\widehat{D}(G)$ and x, y have a unique common vertex in V(G). For $x \in \widehat{D}(G)$, $D^+(\overline{x}) = \{\langle x, y \rangle \in D(L(G)) | y \in \widehat{D}(G) \}$ (cf. Figure 1).

Now in order to give a line map $L(\mathcal{M}) = (D(L(G)), \langle L(\rho), L(\lambda) \rangle)$ for a map $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$, we define the arc-reversing involution $L(\lambda)$ and a natural rotation $L(\rho)$ on L(G).

The arc-reversing involution $L(\lambda)$ on L(G) is given by

$$L(\lambda)\langle x, y \rangle = \langle y, x \rangle$$

for any arc $\langle x, y \rangle \in D(L(G))$.

A natural rotation $L(\rho)$ on L(G) is represented as the product of cyclic permutations $L(\rho)_{\overline{x}}$ on $D^+(\overline{x})$, $x \in \widehat{D}(G)$, defined as follows; if x

is an arc in $\widehat{D}(G)$ joining from u to v, define

$$L(\rho)_{\overline{x}}(\langle x,y\rangle) = \begin{cases} \langle x,\widehat{\rho}_u(y)\rangle & \text{if } y \in \widehat{D}(u) \text{ and } \widehat{\rho}_u(y) \neq x \\ \langle x,\widehat{\rho}_v(x)\rangle & \text{if } y \in \widehat{D}(u) \text{ and } \widehat{\rho}_u(y) = x \\ \langle x,\widehat{\rho}_v(y)\rangle & \text{if } y \in \widehat{D}(v) \text{ and } \widehat{\rho}_v(y) \neq x \\ \langle x,\widehat{\rho}_u(x)\rangle & \text{if } y \in \widehat{D}(v) \text{ and } \widehat{\rho}_v(y) = x \end{cases}$$

for any $\langle x, y \rangle \in D^+(\overline{x})$ (cf. Figure 1).

Figure 1. x,y,z,a,b and c are arcs in $\widehat{D}(G)$ and dotted arrows represent arcs in $D^+(\overline{x})$

For a permutation voltage assignment $\phi: D(G) \to S_k$, the derived map $\mathcal{M}^{\phi} = (D(G^{\phi}), \langle \rho^{\phi}, \lambda^{\phi} \rangle)$ of \mathcal{M} is given. Let $\widehat{D}(G^{\phi}) = \widehat{D}(G) \times \{1, \dots, k\}$ be the controlling arc set for the derived map \mathcal{M}^{ϕ} and let $\widehat{D}(v_j) = \{x_{[j]} | x \in \widehat{D}(v)\}$, where

$$x_{[j]} = \begin{cases} x_j & \text{if } x \in D^+(v) \\ x_{\phi(x^{-1})(j)} & \text{if } x \in D^-(v). \end{cases}$$

Define a cyclic permutation $\widehat{\rho^\phi}_{v_j}$ on $\widehat{D}(v_j)$ via

$$\widehat{
ho^\phi}_{v_j}(x_l) = \widehat{
ho}_v(x)_{[l]}$$

for any $x_l \in \widehat{D}(v_i)$.

For $x_j \in \widehat{D}(G^{\phi})$, let $\overline{x_j} = \{x_j, x_{\phi(x)(j)}^{-1}\}$. Then the line map $L(\mathcal{M}^{\phi})$ for \mathcal{M}^{ϕ} has the vertex set $V(L(G^{\phi})) = \{\overline{x_j}|x_j \in \widehat{D}(G^{\phi})\}$ and the arc set $D(L(G^{\phi})) = \{\langle x_j, y_l \rangle | x_j, y_l \in \widehat{D}(G^{\phi}), \text{ and } x_j, y_l \text{ are adjacent}\}.$

The arc-reversing involution $L(\lambda^{\phi})$ on $L(\mathcal{M}^{\phi})$ is defined by

$$L(\lambda^{\phi})\langle x_j, y_l \rangle = \langle y_l, x_j \rangle$$

for any arc $\langle x_j, y_l \rangle \in D(L(G^{\phi}))$.

For $x_j \in \widehat{D}(G^{\phi})$, $D^+(\overline{x_j}) = \{\langle x_j, y_l \rangle | y \in \widehat{D}(G), y_l \text{ is adjacent to } x_j \}$. A cyclic permutation $L(\rho^{\phi})_{\overline{x_j}}$ on $D^+(\overline{x_j})$ is given as follows; If x is an arc in $\widehat{D}(G)$ joining from u to v, then x_j is an arc in $\widehat{D}(G^{\phi})$ joining from u_j to v_s where $s = \phi(x)(j)$, and

$$L(\rho^{\phi})_{\overline{x_{j}}}(\langle x_{j}, y_{l} \rangle) = \begin{cases} \langle x_{j}, \widehat{\rho^{\phi}}_{u_{j}}(y_{l}) \rangle & \text{if } y_{l} \in \widehat{D}(u_{j}) \text{ and } \widehat{\rho^{\phi}}_{u_{j}}(y_{l}) \neq x_{j} \\ \langle x_{j}, \widehat{\rho^{\phi}}_{v_{s}}(x_{j}) \rangle & \text{if } y_{l} \in \widehat{D}(u_{j}) \text{ and } \widehat{\rho^{\phi}}_{u_{j}}(y_{l}) = x_{j} \\ \langle x_{j}, \widehat{\rho^{\phi}}_{v_{s}}(y_{l}) \rangle & \text{if } y_{l} \in \widehat{D}(v_{s}) \text{ and } \widehat{\rho^{\phi}}_{v_{s}}(y_{l}) \neq x_{j} \\ \langle x_{j}, \widehat{\rho^{\phi}}_{u_{j}}(x_{j}) \rangle & \text{if } y_{l} \in \widehat{D}(v_{s}) \text{ and } \widehat{\rho^{\phi}}_{v_{s}}(y_{l}) = x_{j} \end{cases}$$

for any $\langle x_j, y_l \rangle \in D^+(\overline{x_j})$.

3. Genus and lift of line maps

In this section, we find the genus of the line map for a map and we show that line maps for lifts of a map \mathcal{M} are map-isomorphic to lifts of the line map for \mathcal{M} .

We gives a lemma relative to a special map on a complete graph, which will be used in finding the genus of the line map for a map.

Let K_n be a complete graph with vertices v_1, v_2, \dots, v_n . Each edge $\{v_i, v_j\}$ in K_n gives rise to a pair of arcs $\langle i, j \rangle, \langle j, i \rangle$ where $\langle i, j \rangle$ is an arc joining from v_i to v_j . Thus $D(K_n)$ is the set $\{\langle i, j \rangle | i, j = 1, 2, \dots, n \text{ and } i \neq j\}$ and $D^+(v_i)$ is the set $\{\langle i, j \rangle | j = 1, 2, \dots, n \text{ and } j \neq i\}$.

LEMMA 3.1. Let ϖ be a permutation $\prod_{i=1}^n \varpi_{v_i}$ of $D(K_n)$ in which ϖ_{v_i} is the cyclic permutation $(\langle i, 1 \rangle \cdots \langle i, i-1 \rangle \langle i, i+1 \rangle \cdots \langle i, n \rangle)$ of $D^+(v_i)$.

Then ϖ gives rise to a map \mathcal{K}_n that has $\lceil \frac{n}{2} \rceil$ regions, in which $\lfloor \frac{n-2}{2} \rfloor$ regions are 2n-sided and the remains(one or two regions) are n-sided.

Proof. The result is directly from checking the cycles in the decomposition of $\varpi \circ \lambda$ as the product of disjoint cycles, where λ is a full involution $\prod_{1 \leq i < j \leq n} (\langle i, j \rangle, \langle j, i \rangle)$ of $D(K_n)$.

THEOREM 3.2. Let $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$ be a map in which the genus of the supporting surface is g, and $L(\mathcal{M})$ the line map for \mathcal{M} . Then the genus of the supporting surface of $L(\mathcal{M})$ is

$$g + \frac{1}{4} \sum_{v \in V(G)} \left\{ \deg(v)^2 - 3 \deg(v) - 2 \lfloor \frac{\deg(v) - 1}{2} \rfloor + 2 \right\}.$$

Proof. The number of vertices of $L(\mathcal{M})$ is $\frac{|D(G)|}{2}$ and the number of edges of $L(\mathcal{M})$ is $\frac{1}{2}\sum_{v\in V(G)}\deg(v)(\deg(v)-1)$. From the definition of $L(\rho)$, each region in \mathcal{M} determines a region in $L(\mathcal{M})$. For each vertex v in G, by Lemma 3.1, the arcs incident to v give rise to $\lceil \frac{\deg(v)}{2} \rceil - 1 = \lfloor \frac{\deg(v)-1}{2} \rfloor$ regions in $L(\mathcal{M})$. Hence the number of regions of $L(\mathcal{M})$ is $r(\mathcal{M}) + \sum_{v\in V(G)} \lfloor \frac{\deg(v)-1}{2} \rfloor$, where $r(\mathcal{M})$ is the number of regions in a map \mathcal{M} . From the Euler formula, we see that the genus of the supporting surface of $L(\mathcal{M})$ is given as above.

For a map $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$, iterated line maps are inductively defined by $L^0(\mathcal{M}) = \mathcal{M}$, $L^1(\mathcal{M}) = L(\mathcal{M})$ and $L^{n+1}(\mathcal{M}) = L(L^n(\mathcal{M}))$ for $n \in \mathbb{N}$ with $L^n(\mathcal{M})$ not empty graph. Let $K_{m,n}$ denote the complete bipartite graph on sets of m vertices and n vertices.

COROLLARY 3.3. Given a map \mathcal{M} in which the underlying graph G is connected and is not empty.

- (1) $L(\mathcal{M})$ is embedded in the sphere if and only if \mathcal{M} is embedded in the sphere and G contains no vertex v with $\deg(v) \geq 4$.
- (2) $L^n(\mathcal{M})$ is embedded in the sphere for every $n \in \mathbb{N}$ with $L^{n-1}(\mathcal{M})$ not empty graph if and only if G is a path or a cycle, or $K_{1,3}$.

Proof. (1) If \mathcal{M} is not embedded in the sphere, then $L(\mathcal{M})$ is not embedded in the sphere by Theorem 3.2. We suppose that \mathcal{M} is embedded in the sphere. The term $\deg(v)^2 - 3\deg(v) - 2\lfloor \frac{\deg(v)-1}{2} \rfloor + 2$ in theorem 3.2 equal to

$$\begin{cases} (\deg(v)-1)(\deg(v)-3) & \text{if $\deg(v)$ is odd,} \\ (\deg(v)-2)^2 & \text{if $\deg(v)$ is even.} \end{cases}$$

Hence $L(\mathcal{M})$ is embedded in the sphere if and only if G contains no vertex v with $\deg(v) \geq 4$.

(2) If a map \mathcal{M} has a path or a cycle, or $K_{1,3}$ as the underlying graph G, then $L^n(\mathcal{M})$ is evidently embedded in the sphere for every $n \in \mathbb{N}$ with $L^{n-1}(\mathcal{M})$ not empty graph. For the converse, we suppose that the underlying graph G of a map \mathcal{M} is not a path or a cycle, or $K_{1,3}$. Then G has an edge a with $\deg(u) + \deg(v) \geq 5$, where u, v are the incident vertices of a and so L(G) has a connected subgraph consisting of a 3-cycle and a cut-edge. Hence there exists an edge e in $L^2(G)$ such that the sum of degrees of the incident vertices of e is equal to or greater than e. Therefore e is not embedded in the sphere.

THEOREM 3.4. The line map of any lift for a map \mathcal{M} is map-isomorphic to a lift of the line map for \mathcal{M} .

Proof. Let $\mathcal{M} = (D(G), \langle \rho, \lambda \rangle)$ be a map with controlling arc set $\widehat{D}(G)$ and $\phi : D(G) \to S_k$ a permutation voltage assignment on G. Let $L(\mathcal{M}) = (D(L(G)), \langle L(\rho), L(\lambda) \rangle)$ be the line map for \mathcal{M} and $\mathcal{M}^{\phi} = (D(G^{\phi}), \langle \rho^{\phi}, \lambda^{\phi} \rangle)$ the derived map of the map \mathcal{M} , and $L(\mathcal{M}^{\phi}) = (D(L(G^{\phi})), \langle L(\rho^{\phi}), L(\lambda^{\phi}) \rangle)$ the line map for the map \mathcal{M}^{ϕ} , which are given in section 2.

Define $\psi: D(L(G)) \to S_k$ as follows. For $\langle x, y \rangle \in D(L(G))$, where $x, y \in \widehat{D}(G)$ has a unique common vertex w, one of the following 4 cases holds;

case
$$1 : i(x) = w = i(y)$$
, case $2 : i(x) = w = t(y)$, case $3 : t(x) = w = i(y)$, case $4 : t(x) = w = t(y)$,

where t(x) means the terminal vertex of x and i(x) means the initial vertex of arc x. Let

$$\psi(\langle x, y \rangle)(j) = \begin{cases} j & \text{for case 1,} \\ \phi(y^{-1})(j) & \text{for case 2,} \\ \phi(x)(j) & \text{for case 3,} \\ \phi(y^{-1})(\phi(x)(j)) & \text{for case 4.} \end{cases}$$

Then $\psi(\langle y, x \rangle) = \psi(\langle x, y \rangle)^{-1}$ and ψ is a permutation voltage assignment on L(G).

Let $L(\mathcal{M})^{\psi} = (D(L(G)^{\psi}), \langle L(\rho)^{\psi}, L(\lambda)^{\psi} \rangle)$ be the lift of the line map $L(\mathcal{M})$ with respect to ψ . The vertex set and arc set of $L(G)^{\psi}$ are given as

$$V(L(G)^{\psi}) = \{ \overline{x}_i | x \in \widehat{D}(G), i = 1, \dots, k \},\$$

$$D(L(G)^{\psi}) = \{\langle x, y \rangle_j | \langle x, y \rangle \in D(L(G)), j \in \{1, 2, \dots, k\}\}.$$

Let $D^+(\overline{x}_j) = \{\langle x, y \rangle_j | \langle x, y \rangle \in D^+(\overline{x}) \}$. The arc-reversing involution $L(\lambda)^{\psi}$ and the rotation $L(\rho)^{\psi}$ are given as

$$L(\lambda)^{\psi}(\langle x, y \rangle_j) = \langle y, x \rangle_{\psi(\langle x, y \rangle)(j)},$$

$$L(\rho)^{\psi}_{\overline{x}_{i}}(\langle x,y\rangle_{j})=\left(L(\rho)_{\overline{x}}(\langle x,y\rangle)\right)_{i}.$$

Now define $F: D(L(G)^{\psi}) \to D(L(G^{\phi}))$ by

$$F(\langle x, y \rangle_j) = \langle x_j, y_{\psi(\langle x, y \rangle)(j)} \rangle.$$

Then F is a bijection from $D(L(G)^{\psi})$ onto $D(L(G^{\phi}))$ and

$$F(L(\lambda)^{\psi}(\langle x, y \rangle_{j})) = F(\langle y, x \rangle_{\psi(\langle x, y \rangle)(j)})$$

$$= \langle y_{\psi(\langle x, y \rangle)(j)}, x_{j} \rangle$$

$$= L(\lambda^{\phi})(\langle x_{j}, y_{\psi(\langle x, y \rangle)(j)} \rangle)$$

$$= L(\lambda^{\phi})(F(\langle x, y \rangle_{j})).$$

Finally, we show that $F\left(L(\rho)^{\psi}_{\overline{x_j}}(\langle x,y\rangle_j)\right)=L(\rho^{\phi})_{\overline{x_j}}\left(F(\langle x,y\rangle_j)\right)$. To do it we let $u=\mathrm{i}(x),\ v=\mathrm{t}(x)$ and $s=\phi(x)(j)$. Here we consider the 4th case, that is, $\mathrm{t}(x)=v=\mathrm{t}(y)$. In this case, $y_{\psi(\langle x,y\rangle)(j)}=y_{\phi(y^{-1})(s)}\in\widehat{D}(v_s)$. If $\widehat{\rho_v}(y)\neq x$, then $\widehat{\rho^{\phi}}_{v_s}(y_{\psi(\langle x,y\rangle)(j)})\neq x_j$ and

$$\begin{split} F\Big(L(\rho)^{\psi}_{\overline{x}_j}(\langle x,y\rangle_j)\Big) &= F\Big(\big(L(\rho)_{\overline{x}}(\langle x,y\rangle)\big)_j\Big) \\ &= F\Big(\langle x,\widehat{\rho}_v(y)\rangle_j\Big) \\ &= \langle x_j,\widehat{\rho}_v(y)_{\psi(\langle x,\widehat{\rho}_v(y)\rangle)(j)}\rangle \\ &= \begin{cases} \langle x_j,\widehat{\rho}_v(y)_{s\rangle} & \text{if } \mathrm{i}(\widehat{\rho}_v(y)) = v \\ \langle x_j,\widehat{\rho}_v(y)_{\phi(\widehat{\rho}_v(y)^{-1})(s)}\rangle & \text{if } \mathrm{t}(\widehat{\rho}_v(y)) = v \end{cases} \\ &= \langle x_j,\widehat{\rho}_v(y)_{[s]}\rangle \\ &= \langle x_j,\widehat{\rho^{\phi}}_{v_s}(y_{[s]})\rangle \\ &= \langle x_j,\widehat{\rho^{\phi}}_{v_s}(y_{\phi(y^{-1})(s)})\rangle \\ &= \langle x_j,\widehat{\rho^{\phi}}_{v_s}(y_{\psi(\langle x,y\rangle)(j)})\rangle \\ &= L(\rho^{\phi})_{\overline{x_j}}\big(\langle x_j,y_{\psi(\langle x,y\rangle)(j)}\rangle\big) \\ &= L(\rho^{\phi})_{\overline{x_j}}\big(F(\langle x,y\rangle_j)\big). \end{split}$$

If
$$\widehat{\rho}_v(y) = x$$
, then $\widehat{\rho^{\phi}}_{v_s}(y_{\psi(\langle x,y\rangle)(j)}) = x_j$ and
$$F\Big(L(\rho)^{\psi}_{\overline{x}_j}(\langle x,y\rangle_j)\Big) = F\Big(\big(L(\rho)_{\overline{x}}(\langle x,y\rangle)\big)_j\Big)$$

$$= F\Big(\langle x,\widehat{\rho}_u(x)\rangle_j\Big)$$

$$= \langle x_j,\widehat{\rho}_u(x)_{\psi(\langle x,\widehat{\rho}_u(x)\rangle)(j)}\rangle$$

$$= \begin{cases} \langle x_j,\widehat{\rho}_u(x)_j\rangle & \text{if } \mathrm{i}(\widehat{\rho}_u(x)) = u\\ \langle x_j,\widehat{\rho}_u(x)_{\phi(\widehat{\rho}_u(x)^{-1})(j)}\rangle & \text{if } \mathrm{t}(\widehat{\rho}_u(x)) = u \end{cases}$$

$$= \langle x_j,\widehat{\rho}_u(x)_{[j]}\rangle$$

$$= \langle x_j,\widehat{\rho^{\phi}}_{u_j}(x_{[j]})\rangle$$

$$= \langle x_j,\widehat{\rho^{\phi}}_{u_j}(x_j)\rangle$$

$$= L(\rho^{\phi})_{\overline{x_j}}(\langle x_j,y_{\psi(\langle x,y\rangle)(j)}\rangle)$$

$$= L(\rho^{\phi})_{\overline{x_j}}(F(\langle x,y\rangle_j)).$$

We can check it similarly for the remaining cases. Therefore $L(\mathcal{M})^{\psi}$ is map-isomorphic to $L(\mathcal{M}^{\phi})$ by the mapping F.

Since any map-isomorphism is a graph-isomorphism on underlying graphs, we have the following result.

COROLLARY 3.5. Any line graph of a covering graph of a graph G covers the line graph of G.

References

- [1] D. Archdeacon, J. Lee, and M. Y. Sohn, Line graphs of covering gpaphs are cover graphs, Bull. Korean Math. Soc. **37** (2000), 487–491.
- [2] J. L. Gross and T. W. Tucker, Topological graph Theory, John Wiley and Sons, New York, 1987.
- [3] ______, Generating all graphs by permutation voltage assignments, Discrete Math. 18 (1977), 273-283.
- [4] F. Harary and R. Z. Norman, Some properties of line digraphs, Rend. Circ. Math. Palermo 9 (1960), 161–168.
- [5] S. Stahl, Generalized embedding schemes, J. graph Theory 2 (1978), 41-52.
- [6] H. Whitney, 2-isomorphic graphs, Amer. J. Math. 55 (1933), 245-254.

DEPARTMENT OF MATHEMATICS EDUCATION, YEUNGNAM UNIVERSITY, KYONGSAN 712-749, KOREA

E-mail: kimjh@yu.ac.kr