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AN INTEGRAL FORMULA AND ITS APPLICATIONS

Y. D. Cua1r anD MoonJEONG KIM

ABSTRACT. In this paper, we obtain an integral formula relating
the measure of great spheres S™~2 and arc length of a curve on the
unit sphere S™ 1. As an application of the formula, we develop
a geometric inequality for a spherical curve and prove generalized
version of Fenchel’s theorem in R™.

1. Introduction

Fenchel’s theorem states that [ kds > 27, with equality if and only if
the curve is a convex plane curve. J. W. Milnor [4] reproved the result
with a different method and many other mathematicians generalized the
result to R™.

The main purpose of this paper is to provide a simple and shorter
proof than those previously known. Also, we present a geometric in-
equality for a spherical curve. The proofs are based on the Crofton’s
formula on the measure of great spheres $”~2 on the unit sphere S,

2. Preliminaries

Let a = {(c1(8), c2(5), - -+, cn(5))| 0 < s < I} be a closed curve in R"
with arc length parameters.
For a Frenet frame

(CI(S), €1 ('9)7 T eﬂ(s))
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of the curve ¢, the Frenet equations are

i _

s - &

dei

= = —ki—1(8)ei—1 + Ki(8)eit1.
Here, x;’s are curvatures. Then the unit tangent vector e;(s) = %
(c1(8), c2(5), -+, cn(8)) = (T1(s), Ta(s), ---, Tn(s)) defines a tangent

curve on the unit sphere S"~1. The total curvature of « is defined to be
the quantity fol k1(s)ds, x1(s) = ! de;—s(s)
is the length of its tangent curve.

The following lemma shows how tangent curve of a closed curve
ranges.

. Thus the total curvature of o

LeMMA 1. Tangent curve e1(s) of a closed curve is not contained in
any open hemisphere. ey is contained in a closed hemisphere if and only
if & is in a hyperplane.

Proof. If e were contained in a hemisphere, we may assume T,,(s) > 0
for all 0 < s < 1. Since o = (e1(s), ca(s), - -+, cn(s)) is a closed curve,

1
(1) 0= cn(l) — ca(0) = /0 To(s)ds.

Thus T, (s) cannot be strictly positive. Hence, e1 cannot lie in an open
hemisphere. From (1), since T,,(s) is nonnegative, it must vanish iden-
tically, that is, 0 = T,(s) = %%(s). Hence o must be in a hyperplane
¢n($) = constant. Conversely, if @ is in a hyperplane, then e; lies on a
great sphere S™2 and hence is contained in a closed hemisphere. O

Every oriented great sphere determines uniquely a pole, the endpoint
of the unit vector normal to the unit sphere S?~2. So the following
definition is meaningful.

DerINITION 1. The area of the domain of their poles is meant by the
measure of a set of great spheres "2 on the unit sphere 571,

3. Result

Now we will give the measure of a set of great spheres S”~2 on the
unit sphere S”~! to develop an integral formula concerning an arc on
the unit sphere S™~1.



An integral formula and its applications 91

THEOREM 1. Let v be a smooth arc on the unit sphere S*~1. The
measure of the oriented great spheres S7~2 of S~ which meet ~, each
counted a number of times equal to the number of its common points

with =, is equal to %1—) times the length of vy.

Proof. We suppose 7 is defined by a unit vector ej1(s) expressed as a
function of its arc length s. In a certain neighborhood of s, we take a

frame field {e2(s),--- ,en(s)} as follows; we set {ea(s),es(s)} such that
declls(s) = a1pe2+aizes, {ea(s), -+, en(s)} satisfies e;-¢; = 65,1 < 4,5 < n
and det(e1, ez, - ,en) = +1. From differentiation of e; - e; = d;; and

{ea(s),e3(s)}, we obtain the skew-symmetric matrix of the coefficients
as follows;

de

% 0 a12 a13 0 tee 0 €]
d

2 —ajz 0 a3 Qo4 o0 O2n €2
dez

ds | _ | —m3 —az 0 aze -+ Q3p €3
de,

ds 0 —oy —az —G4 - Gin €
ggf 0 —Qon, —a3n —Q4n 0O €n

If an oriented great sphere S™~? meets -y at the point e;1(s), its pole
is of the form

¢(39 01» T 701L—2)
= (Sil’l f1sinfy - -sin Qn_z)EQ (S) + -
+(cosB;_9sinb;_q---sinb,_2)e;(s) + -+ + cos Op_zen(s),

where 0 < 0y < 27,0 < 03,--- 0,0 < 7.

Thus (8,61, ,0n—2) serve as local coordinates in the domain of
these poles, we wish to find an expression for the element of area of this
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domain.
¢s = (sinfrsinfy---sinf,_s)es(s) + - -
+ (COS B;_osinf;_y---sin 9,7,_2)82(8) + -+ cos Gn_ge;(s)
— (a128in6y - --sinbp—a + a13¢co0s 0y - -8in b, _o)e;+

(a3 sinfy ---sinbpg + -+ — ag, cos Op—g)ea + - - -
+ (ag;sinfy ---sinbp0 + -+ — a4, CO860p_n)e; + - - -
+ (aonsiny - -8inbp_o + -+ — an_1)n €08 On—2)en.

0g, = cosbysinfy---sinb, ses —sinfy sinfy .- sinb,_ses

oo, ., = sinfysinby---cosbp_ses + -+ —sinb,_se,.
Hence, the element of area of ¢ is
|dA| = (det(E; - E;))3

= sin® Oy sin® s - - - sin” 2 Op—2|a12 sin 61 + a13 cos O1|dsdb - - - db,_o,
where 0 § 91 § 27T,O g 92,--- ,Qn_g g .
On the other hand, since s is the arc length of -y, we have

afy +afs = 1,

and we put a2 = cos p(s), a1z = sin p(s), for some p(s). Then

|dA| = sin® @5 - - - sin" "2 ,,_5|a19 sin B + a13 cos 01|dsdf; - - - db,_o

77.20

=sin? 6, - n—2| cos p(s) sin 01 + sin p(s) cos 0 |dsdfy - - - dby,.o

=gin? 6, - - -sm”‘2 Op—2|sin(p(s) + 61)|dsdby - - - db—s.

Let X be the oriented great sphere S"~2 with ¢ as its pole, and let
n(X) be the number of points common to X and v. Then the measure
of oriented great spheres 5™ 2 meeting ~ in our theorem is given by

/n(X)|dA| - /lds/ﬁ.--/%

I Sll‘l 8) + 91)| gin 02 n"—2 Bp_odby---df,_o
= 4l/ / SlIl 92 n—2 Gn_2d92 T den_g.
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But

™ 27
Vol(§"~1) = / co / | sin 75 sin® 73 sind 7y - - sin™ 2 7_1dr - - - dTn
0 0

m m
=2 - 2/ / sin? 73 sind 74 - - - $In" 2 7 1d7s - - - ATt
0 0

Thus

T 7‘r ) Vol Sn—l
/ .o / sin® Tasin® g - sin® 2 mp_dry - - dTpy = —(—-2
0 0 47T

Vol(S“_l)l
— 1

Therefore, [n(X)|dA| = O

COROLLARY 1. Let a be a closed curve in R*. Then [ kds > 2m,
with equality if and only if the curve is a convex plane curve.

Proof. We have known that the total curvature of « is the length of
its tangent curve. Furthermore, from Lemma 1, the tangent curve of
a closed curve meets every great sphere S™ 2 at least two points. So
n(X) > 2. It follows that its length is

0 T ey
l=/ﬁd5=W/ﬂ(X)ldA] > WQ-VOI(S 1y =2r.

It remains to prove the second part of theorem.

If o is a plane convex curve, then e; is contained in a closed hemi-
sphere. Furthermore, e; lies on a great circle. Since « is convex, e; is a
great circle. Thus n(X) is equal to 2. If « is not a plane convex curve, e;
is not contained in any closed hemisphere from Lemma 1. So for some
position of S % n(X) > 2. Hence [xds > 2. This completes the
proof of our corollary. O

A non-oriented geodesic C on S2 can be determined by one of its
poles, that is , by either of the extremities of the diameter perpendicular
to it. We consider a fixed geodesic Cp and a fixed point P on it. The
geodesic C' can be determined for the abscissa t of one of the intersection
points from C and Cp and the angle ¢ between the two circles. From
[5], we have the density for measuring sets of geodesics on S? as follows;

(2) dC = sin ¢ de dt.

Let K be a spherical oriented closed curve and Cp be a fixed geodesic.
Let 7(s) be the angle between Cy and the geodesic tangent to K at
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Figure 1.

K{(s) parametrized by arc length s of K. Then the curvature of K at s
is defined by k = ifzfé’- and the absoluie total curvature is defined by the
integral

3) o = /K ()5 = /K ldr].

The curvature is assigned a magnitude, measuring the rate of deviation
from geodesic-aheadness. The absolute total curvature is a quantity
which measures the total turning of the tangent geodesic,

The breadth corresponding to a point 4 of an oriented closed curve
K on 5% is equal to the length of arc AB (Figure 1) of the geodesic or-
thogonal to K at the point A which is comprehended between A and the
poins of intersection with another geodesic tangent to K also orthogonal

to AB and contain K between two tangent geodesics.
The following inequality is a genevalization to the sphere of the in-

equality by Fary [3] obtained for plane curves.

COROLLARY 2. If a closed curve of length L on the sphere 5% with
absolute total curvature ¢, can be enclosed by a spherical circle of radius
g, then L < pe,.

Proof. Let K be a spherical oriented closed curve, so that there is a
prescribed sense of rotation. Let Cp be a fixed geodesic. Let s denote the
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arc length of K and let 7(s) be the angle between the tangent geodesic
to K and a fixed geodesic. Let v(r) denote the number of unoriented
tangents to K that has the direction 7. Since each direction 7 appears
v(T) times, the equation (3) can be written

Ca = /; o(7)|dr].

On the other hand, if a geodesic C has the direction 7 and meets K
in n points p;, then there are at least n tangents to K that has the
direction 7 ( one for each of the arcs pipa,paps, -+ ,Pn—1Pn, Pnp1) and
thus n(7) < v(7). From our theorem for non-directed geodesics and (2),

we have
2L=/ ndC = /dt/n]sinTclT]
CNK#

< Am/ vldr| = Appeg
0

where L is the length of K which lies inside a spherical circle of radius
p. Since A\, is the maximal breadth of K, A, < 2p. So L < pe,. O

References

[1] W. Blaschke, Vorlesungen tber Integralgeometrie, Hamburger Mathematische
Einzelschriften, Leipzig und Berlin, 1935.

[2] K. Borsuk, Sur la courbure totale des courbes fermées, Annales de la Soc. Polon-
aise 20 (1947), 251-265.

[3] 1. Féry, Sur certaines inégalitiés géométrigues, Acta. Sci. Math. 12 (1950), 117-
124.

[4] J. W. Milnor, On the total curvature of knots, Annals of Math. 52 (1950), 248
257.

[5] L. A. Santald, Integral formulas in Crofton’s style on the sphere and some in-
equalities referring to spherical curves, Duke Math. J. 9 (1942), 703-722.

6] , Integral geometry and geometric probability, Addison-Wesley Pub., 1976.

DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON 440-746,
KoOREA
E-mail: ydchai@yurim.skku.ac.kr

kmj@math.skku.ac.kr



