AN INTEGRAL FORMULA AND ITS APPLICATIONS

Y. D. CHAI AND MOONJEONG KIM

ABSTRACT. In this paper, we obtain an integral formula relating the measure of great spheres S^{n-2} and arc length of a curve on the unit sphere S^{n-1} . As an application of the formula, we develop a geometric inequality for a spherical curve and prove generalized version of Fenchel's theorem in \mathbb{R}^n .

1. Introduction

Fenchel's theorem states that $\int \kappa ds \geq 2\pi$, with equality if and only if the curve is a convex plane curve. J. W. Milnor [4] reproved the result with a different method and many other mathematicians generalized the result to R^n .

The main purpose of this paper is to provide a simple and shorter proof than those previously known. Also, we present a geometric inequality for a spherical curve. The proofs are based on the Crofton's formula on the measure of great spheres S^{n-2} on the unit sphere S^{n-1} .

2. Preliminaries

Let $\alpha = \{(c_1(s), c_2(s), \dots, c_n(s)) | 0 \le s \le l\}$ be a closed curve in \mathbb{R}^n with arc length parameters.

For a Frenet frame

$$(\alpha(s), e_1(s), \cdot \cdot \cdot, e_n(s))$$

Received May 23, 2001. Revised September 20, 2001.

2000 Mathematics Subject Classification: 53C65.

Key words and phrases: Crofton's formula, total curvature, pole.

The first author is supported by Kosef 2000-2-10200-001-3.

of the curve α , the Frenet equations are

$$\frac{d\alpha}{ds} = e_1,$$

$$\frac{de_i}{ds} = -\kappa_{i-1}(s)e_{i-1} + \kappa_i(s)e_{i+1}.$$

Here, κ_i 's are curvatures. Then the unit tangent vector $e_1(s) = \frac{d}{ds}$ $(c_1(s), c_2(s), \dots, c_n(s)) = (T_1(s), T_2(s), \dots, T_n(s))$ defines a tangent curve on the unit sphere S^{n-1} . The total curvature of α is defined to be the quantity $\int_0^l \kappa_1(s)ds$, $\kappa_1(s) = \left\|\frac{de_1(s)}{ds}\right\|$. Thus the total curvature of α is the length of its tangent curve.

The following lemma shows how tangent curve of a closed curve ranges.

LEMMA 1. Tangent curve $e_1(s)$ of a closed curve is not contained in any open hemisphere. e_1 is contained in a closed hemisphere if and only if α is in a hyperplane.

Proof. If e_1 were contained in a hemisphere, we may assume $T_n(s) \ge 0$ for all $0 \le s \le l$. Since $\alpha = (c_1(s), c_2(s), \dots, c_n(s))$ is a closed curve,

(1)
$$0 = c_n(l) - c_n(0) = \int_0^l T_n(s) ds.$$

Thus $T_n(s)$ cannot be strictly positive. Hence, e_1 cannot lie in an open hemisphere. From (1), since $T_n(s)$ is nonnegative, it must vanish identically, that is, $0 = T_n(s) = \frac{d}{ds}c_n(s)$. Hence α must be in a hyperplane $c_n(s) = \text{constant}$. Conversely, if α is in a hyperplane, then e_1 lies on a great sphere S^{n-2} and hence is contained in a closed hemisphere. \square

Every oriented great sphere determines uniquely a pole, the endpoint of the unit vector normal to the unit sphere S^{n-2} . So the following definition is meaningful.

DEFINITION 1. The area of the domain of their poles is meant by the measure of a set of great spheres S^{n-2} on the unit sphere S^{n-1} .

3. Result

Now we will give the measure of a set of great spheres S^{n-2} on the unit sphere S^{n-1} to develop an integral formula concerning an arc on the unit sphere S^{n-1} .

THEOREM 1. Let γ be a smooth arc on the unit sphere S^{n-1} . The measure of the oriented great spheres S^{n-2} of S^{n-1} which meet γ , each counted a number of times equal to the number of its common points with γ , is equal to $\frac{Vol(S^{n-1})}{\pi}$ times the length of γ .

Proof. We suppose γ is defined by a unit vector $e_1(s)$ expressed as a function of its arc length s. In a certain neighborhood of s, we take a frame field $\{e_2(s), \cdots, e_n(s)\}$ as follows; we set $\{e_2(s), e_3(s)\}$ such that $\frac{de_1(s)}{ds} = a_{12}e_2 + a_{13}e_3, \{e_2(s), \cdots, e_n(s)\}$ satisfies $e_i \cdot e_j = \delta_{ij}, 1 \leq i, j \leq n$ and $\det(e_1, e_2, \cdots, e_n) = +1$. From differentiation of $e_i \cdot e_j = \delta_{ij}$ and $\{e_2(s), e_3(s)\}$, we obtain the skew-symmetric matrix of the coefficients as follows;

$$\begin{pmatrix} \frac{de_1}{ds} \\ \frac{de_2}{ds} \\ \vdots \\ \frac{de_3}{ds} \\ \vdots \\ \frac{de_i}{ds} \end{pmatrix} = \begin{pmatrix} 0 & a_{12} & a_{13} & 0 & \cdots & 0 \\ -a_{12} & 0 & a_{23} & a_{24} & \cdots & a_{2n} \\ -a_{13} & -a_{23} & 0 & a_{34} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a_{2i} & -a_{3i} & -a_{4i} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a_{2n} & -a_{3n} & -a_{4n} & \cdots & 0 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{pmatrix}.$$

If an oriented great sphere S^{n-2} meets γ at the point $e_1(s)$, its pole is of the form

$$\phi(s, \theta_1, \dots, \theta_{n-2})$$

$$= (\sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-2}) e_2(s) + \dots + (\cos \theta_{i-2} \sin \theta_{i-1} \dots \sin \theta_{n-2}) e_i(s) + \dots + \cos \theta_{n-2} e_n(s),$$

where $0 \le \theta_1 \le 2\pi, 0 \le \theta_2, \cdots, \theta_{n-2} \le \pi$.

Thus $(s, \theta_1, \dots, \theta_{n-2})$ serve as local coordinates in the domain of these poles, we wish to find an expression for the element of area of this

domain.

$$\phi_{s} = (\sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{n-2})e'_{2}(s) + \cdots$$

$$+ (\cos \theta_{i-2} \sin \theta_{i-1} \cdots \sin \theta_{n-2})e'_{i}(s) + \cdots + \cos \theta_{n-2}e'_{n}(s)$$

$$= -(a_{12} \sin \theta_{1} \cdots \sin \theta_{n-2} + a_{13} \cos \theta_{1} \cdots \sin \theta_{n-2})e_{1} +$$

$$(a_{23} \sin \theta_{1} \cdots \sin \theta_{n-2} + \cdots - a_{2n} \cos \theta_{n-2})e_{2} + \cdots$$

$$+ (a_{2i} \sin \theta_{1} \cdots \sin \theta_{n-2} + \cdots - a_{in} \cos \theta_{n-2})e_{i} + \cdots$$

$$+ (a_{2n} \sin \theta_{1} \cdots \sin \theta_{n-2} + \cdots - a_{(n-1)n} \cos \theta_{n-2})e_{n}.$$

$$\phi_{\theta_{1}} = \cos \theta_{1} \sin \theta_{2} \cdots \sin \theta_{n-2}e_{2} - \sin \theta_{1} \sin \theta_{2} \cdots \sin \theta_{n-2}e_{3}$$

$$\vdots$$

$$\phi_{\theta_{n-2}} = \sin \theta_{1} \sin \theta_{2} \cdots \cos \theta_{n-2}e_{2} + \cdots + \sin \theta_{n-2}e_{n}.$$

Hence, the element of area of ϕ is

$$|dA| = (\det(E_i \cdot E_j))^{\frac{1}{2}}$$

= $\sin^2 \theta_2 \sin^3 \theta_3 \cdots \sin^{n-2} \theta_{n-2} |a_{12} \sin \theta_1 + a_{13} \cos \theta_1| ds d\theta_1 \cdots d\theta_{n-2},$

where $0 \le \theta_1 \le 2\pi, 0 \le \theta_2, \cdots, \theta_{n-2} \le \pi$.

On the other hand, since s is the arc length of γ , we have

$$a_{12}^2 + a_{13}^2 = 1,$$

and we put $a_{12} = \cos \rho(s), a_{13} = \sin \rho(s)$, for some $\rho(s)$. Then

$$|dA| = \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} |a_{12} \sin \theta_1 + a_{13} \cos \theta_1 | ds d\theta_1 \cdots d\theta_{n-2}$$

$$= \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} |\cos \rho(s) \sin \theta_1 + \sin \rho(s) \cos \theta_1 | ds d\theta_1 \cdots d\theta_{n-2}$$

$$= \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} |\sin(\rho(s) + \theta_1)| ds d\theta_1 \cdots d\theta_{n-2}.$$

Let X be the oriented great sphere S^{n-2} with ϕ as its pole, and let n(X) be the number of points common to X and γ . Then the measure of oriented great spheres S^{n-2} meeting γ in our theorem is given by

$$\int n(X)|dA| = \int_0^l ds \int_0^{\pi} \cdots \int_0^{2\pi} |\sin(\rho(s) + \theta_1)| \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} d\theta_1 \cdots d\theta_{n-2}$$
$$= 4l \int_0^{\pi} \cdots \int_0^{\pi} \sin^2 \theta_2 \cdots \sin^{n-2} \theta_{n-2} d\theta_2 \cdots d\theta_{n-2}.$$

But

$$Vol(S^{n-1}) = \int_0^{\pi} \cdots \int_0^{2\pi} |\sin \tau_2| \sin^2 \tau_3 \sin^3 \tau_4 \cdots \sin^{n-2} \tau_{n-1} d\tau_1 \cdots d\tau_{n-1}$$
$$= 2\pi \cdot 2 \int_0^{\pi} \cdots \int_0^{\pi} \sin^2 \tau_3 \sin^3 \tau_4 \cdots \sin^{n-2} \tau_{n-1} d\tau_3 \cdots d\tau_{n-1}.$$

Thus

$$\int_0^\pi \cdots \int_0^\pi \sin^2 \tau_3 \sin^3 \tau_4 \cdots \sin^{n-2} \tau_{n-1} d\tau_3 \cdots d\tau_{n-1} = \frac{\operatorname{Vol}(S^{n-1})}{4\pi}.$$
 Therefore,
$$\int n(X) |dA| = \frac{\operatorname{Vol}(S^{n-1})}{\pi} l.$$

COROLLARY 1. Let α be a closed curve in \mathbb{R}^n . Then $\int \kappa ds \geq 2\pi$, with equality if and only if the curve is a convex plane curve.

Proof. We have known that the total curvature of α is the length of its tangent curve. Furthermore, from Lemma 1, the tangent curve of a closed curve meets every great sphere S^{n-2} at least two points. So $n(X) \geq 2$. It follows that its length is

$$l = \int \kappa ds = \frac{\pi}{\operatorname{Vol}(S^{n-1})} \int n(X) |dA| \ge \frac{\pi}{\operatorname{Vol}(S^{n-1})} \cdot 2 \cdot \operatorname{Vol}(S^{n-1}) = 2\pi.$$

It remains to prove the second part of theorem.

If α is a plane convex curve, then e_1 is contained in a closed hemisphere. Furthermore, e_1 lies on a great circle. Since α is convex, e_1 is a great circle. Thus n(X) is equal to 2. If α is not a plane convex curve, e_1 is not contained in any closed hemisphere from Lemma 1. So for some position of S^{n-1} , n(X) > 2. Hence $\int \kappa ds > 2\pi$. This completes the proof of our corollary.

A non-oriented geodesic C on S^2 can be determined by one of its poles, that is, by either of the extremities of the diameter perpendicular to it. We consider a fixed geodesic C_0 and a fixed point P on it. The geodesic C can be determined for the abscissa t of one of the intersection points from C and C_0 and the angle ϕ between the two circles. From [5], we have the density for measuring sets of geodesics on S^2 as follows;

$$(2) dC = \sin \phi \, d\phi \, dt.$$

Let K be a spherical oriented closed curve and C_0 be a fixed geodesic. Let $\tau(s)$ be the angle between C_0 and the geodesic tangent to K at

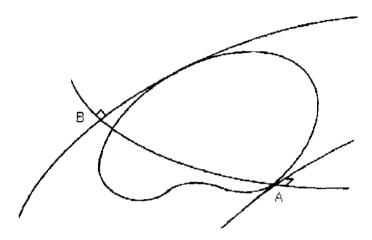


FIGURE 1.

K(s) parametrized by arc length s of K. Then the curvature of K at s is defined by $\kappa = \frac{d\tau}{ds}$ and the absolute total curvature is defined by the integral

(3)
$$c_a = \int_K |\kappa| ds = \int_K |d\tau|.$$

The curvature is assigned a magnitude, measuring the rate of deviation from geodesic-aheadness. The absolute total curvature is a quantity which measures the total turning of the tangent geodesic.

The breadth corresponding to a point A of an oriented closed curve K on S^2 is equal to the length of arc AB (Figure 1) of the geodesic orthogonal to K at the point A which is comprehended between A and the point of intersection with another geodesic tangent to K also orthogonal to AB and contain K between two tangent geodesics.

The following inequality is a generalization to the sphere of the inequality by Fáry [3] obtained for plane curves.

COROLLARY 2. If a closed curve of length L on the sphere S^2 with absolute total curvature c_a can be enclosed by a spherical circle of radius ρ , then $L \leq \rho c_a$.

Proof. Let K be a spherical oriented closed curve, so that there is a prescribed sense of rotation. Let C_0 be a fixed geodesic. Let s denote the

arc length of K and let $\tau(s)$ be the angle between the tangent geodesic to K and a fixed geodesic. Let $v(\tau)$ denote the number of unoriented tangents to K that has the direction τ . Since each direction τ appears $v(\tau)$ times, the equation (3) can be written

$$c_a = \int_0^{\pi} v(\tau) |d\tau|.$$

On the other hand, if a geodesic C has the direction τ and meets K in n points p_i , then there are at least n tangents to K that has the direction τ (one for each of the arcs $p_1p_2, p_2p_3, \dots, p_{n-1}p_n, p_np_1$) and thus $n(\tau) \leq v(\tau)$. From our theorem for non-directed geodesics and (2), we have

$$2L = \int_{C \cap K \neq \emptyset} n dC = \int dt \int n |\sin \tau d\tau|$$

$$\leq \Delta_m \int_0^{\pi} v |d\tau| = \Delta_m c_a$$

where L is the length of K which lies inside a spherical circle of radius ρ . Since \triangle_m is the maximal breadth of K, $\triangle_m \leq 2\rho$. So $L \leq \rho c_a$.

References

- [1] W. Blaschke, Vorlesungen über Integralgeometrie, Hamburger Mathematische Einzelschriften, Leipzig und Berlin, 1935.
- [2] K. Borsuk, Sur la courbure totale des courbes fermées, Annales de la Soc. Polonaise 20 (1947), 251-265.
- [3] I. Fáry, Sur certaines inégalitiés géométriques, Acta. Sci. Math. 12 (1950), 117– 124.
- [4] J. W. Milnor, On the total curvature of knots, Annals of Math. 52 (1950), 248–257.
- [5] L. A. Santaló, Integral formulas in Crofton's style on the sphere and some inequalities referring to spherical curves, Duke Math. J. 9 (1942), 703-722.
- [6] _____, Integral geometry and geometric probability, Addison-Wesley Pub., 1976.

DEPARTMENT OF MATHEMATICS, SUNGKYUNKWAN UNIVERSITY, SUWON 440-746, KOREA

E-mail: ydchai@yurim.skku.ac.kr kmj@math.skku.ac.kr