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CELLULAR ALGEBRAS AND
CENTERS OF HECKE ALGEBRAS

YEON-KwaAN JEONG, IN-S0K LEE,
HvExkyunGg OH, AND KYUNG-HWAN PARK

ABSTRACT. In this short note, we find bases of the centers of
generic Hecke algebras associated with certain finite Coxeter groups.
Our basges are described using the notion of cell datum of Graham
and Lehrer, and the notion of norm.

1. Introduction

For any ring R and any finite Weyl group W, the set of conjugacy class
sums of a group algebra R[W] forms a basis of the center of R[W]. We
know that there is the Lusztig isomorphism between the group algebra
of W over Q(q'/2) and the Hecke algebra H(W) over Q(¢*/?), where g is
an indeterminate over @ and W is an indecomposable Weyl group (see
[9]). Therefore, it is natural to ask if there is a ‘generic’ analogue (or a
g-analogue) of the above basis of the center of R[W]. In [3], using the
class polynomials, Geck and Rouquier found such a basis of the center
of H(W), where H(W) is the Hecke algebra associated with W over
Z[q,q7'] with ¢ an indeterminate. On the other hand, for the Hecke
algebra of the symmetric group S, over Q[g,¢'], ¢ an indeterminate,
Jones ([7]) found a basis of the center of H(S,,) over Q[g, ¢~*], which is an
another generic analogue of conjugacy class sums (see [7]). Finding such
a basis, Jones used the concept of norm which is also an important tool
in the present paper (see Lemma 2.2). Furthermore, in [10], [1], and [6],
a complete set of primitive central idempotents is described for Hecke

Received January 17, 2001.

2000 Mathematics Subject Classification: 16(G99, 20F55.

Key words and phrases: Hecke algebra, cellular algebra, center.

Partially supported by 1997 Basic Science Research Institute Program, Ministry of
Education, BSRI-97-1414, and by the BK21 Mathcmatical Division at Seoul National
University.



72 Y.-K. Jeong, 1.-S. Lee, H. Oh, and K.-H. Park

algebra of type A, B, and Day.q, respectively, using Jucy-Murphy
type elements.

The motivation of this paper is the following question: What are
canonical bases of the centers for the Hecke algebras H(S,,) over Q(q), ¢
an indeterminate, which not only are ¢-analogues of the conjugacy class
sum bases but also can be described in terms of the Kazhdan-Lusztig
bases {Cy | w € S, }7 (see [8] for the Kazhdan-Lusztig bases.)

In Proposition 2.4, we first observe that any basis of the center con-
sists of the elements

N, ()= > ¢~ TymshT,

WES,

for h € H(S,). An answer to the above question can be given as a
special case of Theorem 3.7. In fact, if we choose only one standard
tableau S(A) for each partition A of n, and if w ~ (S(A), S(A\)) denotes
the Robinson-Schensted correspondence (For example, see [11] for the
Robinson-Schensted correspondence.) then

{Ns, (Cy) | A is a partition of n, w ~ (S(X),S(A)}

is a basis of the center of H(S,,).

So, we have the same question for Hecke algebras of type other than
A,. Since the cell structure of Hecke algebra of type other than A, does
not play such a role as that of H(5,,), we have to modify our question.
We found an essential clue in [4], where Graham and Lehrer introduced
the concept of cellular algebra and showed that the Kazhdan-Lusztig
basis {Cy} is a cellular basis for the Hecke algebra of type A, (see
[4]). This observation led us to comnsider cellular bases instead of the
Kazhdan-Lusztig bases in the above question.

In Theorem 3.7, we answer this modified question when H(W) is the
Hecke algebra of type A,, By, Dan+1 or dihedral group. These algebras
are cellular algebras and their cell data (A, M, C,*) are described in [10],
[1], [6] and [2], respectively.

The most significant aspect of cellular algebra is that one can sys-
tematically understand the irreducible representations of Hecke algebra
using its cellular basis (see [4]). Our result shows that a basis of the
center can be also described in terms of cell datum.

2. Centers of Hecke algebras

A Coxeter system (W, S) is a pair consisting of a group W and a set
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of generators S C W, subject only to the following relations:
(Ss/)'m(s.s') — 17

where m(s,s) = 1 and m(s,s’) = m(s’,s) > 2 for s # s’ in S. Since
the generators s € 5 have order 2 in W, each w in W can be written in
the form w = s159...s, for some s; in S. We define the length £(w) of
w to be the smallest r for which such an expression exists, and call the
expression reduced. By convention, we put £(1) = 0. (For more details,
see, for example, [5].)

DEFINITION 2.1. Let R be an integral domain, ¢ be an invertible
element of R and (W, S) be a finite Coxeter system. The Hecke algebra
H(W) of W over R with respect to g is defined to be a free R-module with
basis {T,, | w € W} with the following associative R-algebra structure:

(1) Ty acting as the identity,
(2) T\Tyy = Tow if 4(sw) > L(w),
(3) TsTy = (g — )Ty + ¢TI L(sw) < L(w)

for s € S, w € W. By convention, we write a to denote o1} for a € R.
Let * be the R-linear anti-automorphism of H(W) for which Ty, = T},-1.

In [7], Jones proved the following result using the concept of Frobenius
algebra. In this paper, we provide an elementary proof.

LEMMA 2.2 ([7, Lemma 2.4]). Let (W, 5) be a finite Coxeter system
and H(W) be the Hecke algebra corresponding to W. Define the norm
Nw (h) by

Nw(h) = Z q_e(w)Tw_.]_hTw7
weW

for h € H(W), then Ny (h) is contained in the center of H(W).

Proof. Put A, = {w € W | L(ws) < l{w)} for s € 5 and B, =
W — A,. We may denote Ny (h) = Na,(h) + Np,(h), where N4_(h) =
Y wea, @ AT, -1 hT, and N, (R) = 3 e, ) Ty-1hTy. Then we
have
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T N4, (h)
=T, » ¢ ‘T, hT,
weA,
= Z ¢ * T T, T, kT,  (where w = vs and £(w) = £(v) + 1)
wEA,
= 3 (g = VT, + T, hTLT,
wEA;
_ (q _ 1) Z q_g(’w)TsTv-lhT@ﬂ + ( Z q—l?(1u)+1Tv_lhTu) T,
weA, wWEA,

= (g — 1)Na,(h) + (Z q—“”)Tu-lhﬂ,) T,

veB,

= (g — )N, (h) + Np, (R)T,.
Similarly, we get

NA (h)Te- = (q - 1)NA6 (h) + TsNBb (h)

Thus we conclude that

T Now(h) = ToNa, () + TeNs, (1)
= (¢ — D)Na,(h) + N, ()T, + TN, (h)
= N, (R)T, + N, (h)T,
= Nw (h)Ts. O

In the rest of the present section, we assume that F is a field of
characteristic zero. Let F[q,q?] be the ring of Laurent polynomials
over F. There is a natural F-algebra homomorphism

e! HF[q,q-l](W) — F[W],

which maps T, to w for w € W and q to 1, where Hppg o-11(W) is the
Hecke algebra of W over F[g,q™ '] and F[W] is the group algebra of W
over F. When we apply the map e to the elements of H g q~1)(W), we
simply say “set ¢ = 1”7. Also, we write e(h) = A[1] for h € Hp(q —11(W).
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REMARK 2.3. If we consider the F[g,q !]-linear operator L; on
HF[q,q—lJ(W) defined by L;L(.’E) = hz for x,h € HF[q,q—-l](W) and the
F-linear operator Lypy on F[W] defined by Lypj(a) = h[1] a for h €
Hrig,q-11(W), a € F[W], then e maps the determinant of Ly, to the de-
terminant of Ly, So, if A[1] € F[W] is an invertible element, that is,
the determinant of Ly[1) is not zero, then h € Hpyq o-11(W) is an invert-
ible element in F(q) ®r(g,q-1] Hrigqe-1](W) = H(W), where H(W) is
the Hecke algebra of W over F(q).

PROPOSITION 2.4. Let W be a finite Coxeter group and H(W) be
the Hecke algebra corresponding to W over F(q), g an indeterminate
and F' a field with characteristic zero. Then the center of H(W) is equal
to

{Nw(h) | h e H(W)}.

Proof. Note that the elements Nw () = 3, crow) g T hT,
are contained in the center by Lemma 2.2 and Ny (1)[1] = |[W| € F[W]
is an invertible element. So, Ny (1) is an invertible element in H(W)
by Remark 2.3 and its inverse element is contained in the center. Let
€= ew 0wl be an element of center where a,, € F(g), then

CNw(l) ZN[)V(C) = Z awNw'(Tw).
weW

Therefore we get

c= (Z awNW(Tw)> Nw(D) 7 =" auNw (TuNw(1)7H).

weEW weEW

This completes the proof. O

Therefore, when we look for a basis of the center of H(W), Proposition
2.4 forces us to consider the elements Nw (h) =3, cw ¢ X T, _ hT,,
for h € H(W).

3. A basis of the center of Hecke algebra

In this section, we find a basis of the center of Hecke algebra. We
begin with the definition of cellular algebras.
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DermNITION 3.1 ([4]). A cellular algebra over R is an associative al-
gebra A, together with cell datum (A, M, C, ), where

(C1) A is a partially ordered set and for each A € A, M(A) is a finite
set such that C : [],.y M()\) x M(X) — A is an injective map
with image an R-basis, called a cellular basis, of A.

(C2) fAe Aand §,T € M(X), write C(S,T) = C3 1 € A. Then * is
an R-linear anti-automorphism of A such that (C31)* = O 5.

(C3) If Ae A and §,T € M()), then for any element a € A we have

aCir= Y 7(5,8)Ch r (modA (<))
STEM(A)
where r,(5’,5) € R is independent of T' and where A(< A) is
the R-submodule of A generated by {Cg. 7. | p < N 8", T" €
M(p)}-

REMARK 3.2. For an integral domain R and an invertible element
g € R, Murphy found a ‘standard’ basis {z,s} which is a cellular ba-
sis of H(S,) over R, and Dipper, James and Murphy also described a
cellular basis of the Hecke algebra of type B,, over R. (See [10] and
[1], respectively.) In [2], Fakiolas investigated the irreducible represen-
tations of Hecke algebras associated with the dihedral groups of order 2n
over R = Q(cos(27/n))(¢'/?), ¢ an indeterminate, and found an R-basis
which is, in fact, a cellular basis. For R = Q(g), ¢ an indeterminate, the
present authors described a cellular basis of the Hecke algebra of type
Doyyq1 over R in [6]. (In [6], a more general statement is given than
stated above.)

The main result of this paper is obtained under the following assump-
tion.

AssUMPTION 3.3. From now on, we assume that Hecke algebra H (W)
over R is either one of the followings:
(1) W is a Weyl group of type A,,,B,, or Da, 1 and R = Q(g), ¢ an
indeterminate.
(2) W is a dihedral group of order 2n and R = Q(cos(2m/n))(g*/?),
q an indeterminate.

One can find the following results in [1], [2], [6] and [10].
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REMARK 3.4. (a) The Hecke algebras in Assumption 3.3 are split
semisimple cellular algebras and the number of finite dimensional non-
isomorphic irreducible representations of H(W) over R is equal to the
cardinality of A and is equal to the rank of the center of H(W).

(b) We denote the cellular basis of Hecke algebra in Assumption 3.3
by {C3r} for simplicity. Note that T,,C3r is a Z[g,q™"]-linear com-
bination of {C§ 1} for the Hecke algebra of type An, B, or Dyni1 and
is a Z[cos(2m/n), q'/2, ¢~ "/?]-linear combination of {C3 1} for the Hecke
algebra of dihedral group of order 2n.

We obtain the following lemma using the axioms (C1), (C2) and (C3)
in Definition 3.1. If h = 3~ ¢+ 'r'g,TC%“T, where Tg’T € R, we say that
137 is the C§ p-coefficient of h.

LemMA 3.5. Let H(W) be the Hecke algebra in Assumption 3.3. For
S € M(\) and w € W, assume that the C§ g-coefficient of T,,-1C3 g is
ay g. Then the C g-coefficient of T,,-:C3 sT,y is (a¥ g)%.

Proof. We denote Tz o) by 7y for simplicity. Since

T,-1Css=0aYsC8s+ . mw(8.5)Cs s (mod A (<))

S'eM(A)
§'#8
we get
CisTw=alsCss+ > ru(§, 8)Css (modA (<))
§'eM(N)
S'#S
by (C2). Hence,
Ty-1C3 5T
= QE\U,SOAQ,SEU + Z ’r',w(S/, S)Og’,STw (IIlOd A (< )‘))
S'EM(A)
S'#8
=as(aysCis+ > rul8,S)Cs)
S'eM(\)
§'#£S
+ 3 ru(8.s ( 3 (T, S)OQ,,T) (mod A (< \)).
S'eM(N) TEM(X)

S'£8
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So the C3 g-coefficient of T,,-1C3 gT,, is (a¥ 5)% O

The following lemma is a consequence of Remark 3.4 and Lemma 3.5.

LeMMA 3.6. Let H(W) be the Hecke algebra in Assumption 3.3. For
any A € A and S € M(X\), the C§ g-coefficient of

Y a0 5T
weW

is not zero.

Proof. The C} g-coeficient of 37, ap ¢4 Tpyms C2 5 Ty i8 Y ey
g~ tw) (aﬁis)2 by Lemma 3.5. If we set ¢ = 1, this becomes a sum of
squares of real numbers, and hence 3, .,y ¢~ 4%) (a¥ ¢)* # 0. (Note that
ay,¢ = 1 and aY 5 is a Laurent polynomial in ¢ by Remark 3.4.(b).) O

The main result of the present paper is:

THEOREM 3.7. Let H(W) be the Hecke algebra in Assumption 3.3.
Choose only one S(\) € M(\) for each A € A. Then

{Nw (C309,500) | A € A}
is an R-basis for the center of H(W).

Proof. Let us denote Ny = ./\/‘W(Cg( 2,5 )\)) for simplicity. As we men-
tioned in Remark 3.4.(a), the cardinality of A is equal to the dimension
of the center of H(W). Therefore it is enough to show that {N) [ A € A}
is linearly independent over R. Assume ), byNy =0 for by € R. We
have to show that b, = 0 for all A € A. We show this using the ‘in-
duction’ with respect to the partial order of A. For a given ug, suppose
that there is no A such that A > ug. Since N, is contained in the R-
submodule of H(W) generated by {Cg . | p < A; 5, T € M(u)} by (C2)
and (C3), the Cg?ﬂo)’s(#orcoefﬁcien‘c of 3 ycp baNy is the Cg’[(juo),S(no)“
coefficient of b, ,N,,. Thus we get b,, = 0 by Lemma 3.6. Next, for a
given p, assume that by = 0 for all A > u, then we also get b, = 0 by
the same argument. This completes the proof. O
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The most significant aspect of cellular algebra is that one can sys-
tematically understand the irreducible representations of Hecke algebra
using its cellular basis (see [4]). It is quite interesting that a basis of the
center can be also described in terms of cell datum.

[10]
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