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ON POSITIVE-NORMAL OPERATORS
In Ho JeoN, SE HEE KM, EunciL Ko, AND J1 EUN PARK

ABSTRACT. In this paper we study the properties of positive-normal
operators and show that Weyl’s theorem holds for some totally
positive-normal operators.

1. Introduction

Let H be an infinite dimensional complex Hilbert space, let £L(H) the
algebra of all bounded linear operators on H. An operator T' € L(H) is
called a positive-normal (or posinormal) operator if there exists a positive
operator P € L(H), called the interrupter, such that 77* = T*PT.
This class of operators was introduced and studied in [12]. Recall ([13])
that an operator T & L(H) is said to be dominant if for each A € C
there exists a positive number M, such that

(T — N(T = N* < Ma(T — (T = N).

If the constants M)y are bounded by a positive number M, then T is
said to be M-hyponormal. Also, we may note that if 7 is 1-hyponormal,
then T is hyponormal. In [12] it is well known that the class of dominant
operators is a proper subset of the class of positive-normal operators. So

hyponormal = M — hyponormal
(1) = dominant
= positive-normal.

In view of (1), it is very natural to study the properties of positive-
normal operators.
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An operator T € L(H) is called Fredholm if the range of T', denoted by
Ran(T), is closed, and the kernel of T', denoted by Ker(7T"), and H/R(T)
are both finite dimensional. If T is Fredholm, then the index of T is
defined by

ind(7) = dim Ker(T) — dim H/R(T)

and a Fredholm operator with index zero is called Weyl [7]. We shall
denote o(T), op(T), 7o(T), and isoc(T) by the spectrum of T, the set
of all eigenvalues of T', the set of all eigenvalues of finite multiplicity of
T, and the set of all isolated points of ¢(T'), respectively. We write

00 (T) = T (T) N iSOCT(T)

for the set of all isolated eigenvalues of finite multiplicity of T. The Weyl
spectrum of T', denoted by w(T'), is defined by

w(T) ={AeC: T — X\ is not Weyl}.
Following Coburn [4] we say that Weyl’s theorem holds for T if
O'(T) \ w(T) - ﬂoo(T).

In a vast literature, there exist several classes of operators for which
Weyl’s theorem holds. In particular, Coburn[4] showed that Weyl’s
theorem holds for hyponormal operators, which was extended to M-
hyponormal operators by Arora and Kumer [1]. Also, in [3] it was shown
that Weyl’s theorem holds for p-hyponormal operators. On the other
hand, using results of Oberai[11], Lee and Lee [10] showed that the spec-
tral mapping theorem holds for w(T") and Weyl’s theorem holds for f(T)
when T is hyponormal and f is a function analytic on a neighborhood
of o(T'). Recently, this was also improved by Hou and Zhang (8] to show
that the spectral mapping theorem holds for Weyl spectrum of a dom-
inant operator T' and that Weyl’s theorem holds for f(T") when T is
M-hyponormal.

In this paper we study important properties of positive-normal op-
erators and show that Weyl’s theorem holds for some totally positive-
normal operators.

2. Main results

The following result suggests that the definition of a positive-normal
operator can be weaken.
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THEOREM 1. An operator T' € L(H) is positive-normal if and only if
there exists a positive operator P € L(H) such that TT* < T*PT.

Proof. Tt suffices to show that if there exists a positive operator P €
L(H) such that TT* < T*PT, then T is positive-normal. For any z € H

|T*2|? = (TT"w,2)
<{(T*PTz,z)
= (VPTz,VPTz)
= |VPTz|’
< |IVPI?|T=|*.

Hence for any x € H
IT*z|| < VP Tzl
Set A = ||[v/P|. Then for any = € H
1T2]| < ATz

Thus
TT* < N°T*T for some X > 0.

By [5], there exists B € £(H) such that 7" = T™ B. Therefore,
TT* = (I*B)(B™T) =T"(BB")T.
So T is a positive-normal operator with an interrupter BB*. ]
If we take P = I in Theorem 1, we get the following corollary.
COROLLARY 2. Every hyponormal operator is positive-normal.

PrOPOSITION 3. If T € L(H) is positive-normal, then Ker(T) =
Ker(T?).

. Proof. Tt suffices to show that Ker(7?) C Ker(T). If z € Ker(1T?),
then T2z = 0. Hence Tz € Ker(T'). Since Ker(T) C Ker(T*), Tz €
Ker(T*). Hence T*T'x = 0. Now,

|IT2||* = (T2, Tx) = {T*Tw,«) < [|[T*Tx]||z]| = 0
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Thus T2 = 0, and so we have z € Ker(T'). O

We remark that the unilateral backward shift U* is not positive-
normal since Ker(U*) # Ker(U*?).

PropPOSITION 4. If T € L(H) is positive-normal with interrupter P
and M € Lat(T), then T| 4 is also positive-normal.

Proof. If M € Lat(T), let Q) : H — M be the orthogonal projection
of H onto M. Then for all m € M

Hence (T|pm)* = T*Q on M. For all m € M,
(T s)*ml = |T*Qm|| = |(VPT)|seml].
Hence T'| o1 is positive-normal. O

Halmos showed in [6, # 204] that a partial isometry is subnormal if
and only if it is the direct sum of an isometry and zero. We generalize
this theorem to the case of a positive-normal operator.

THEOREM 5. A partial isometry T is quasinormal (ie. (T*T)T =
T(T*T)) if and only if T is positive-normal.

Proof. Assume T is a partial isometry and positive-normal operator.
Since Ker(T') is a reducing subspace for T from [12, Corollary 2.3],

(5 20} Y
0 T‘(Ker(T))J- 0 A)’ '
where A = T|(ker(7))+ is isometry. Hence
(0 0\ [0 0
TT_(O A*A)"(O I)'

So (T*T)T = T(T*T). Thus T is quasinormal. Since the converse
implication is trivial, we complete the proof. O
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It is well known that if 7" is hyponormal and compact then T is
normal. But it is not true in the case of positive-normal operators.

ExXAMPLE 6. Let H be a 2-dimensional Hilbert space and let T° be

defined on H as
1 0
ro(19)

Then T*T # TT*. Hence T is not normal. On the other hand, consider

a positive operator
1 -1
p- (_1 . ) .

Then TT* =T PT. Hence T is positive-normal.

From Example 6 we conclude that positive-operators on a finite di-
mensional Hilbert space are not necessary normal.

It is trivial that the positive-normality is invariant under unitary

equivalence. But the similarity does not preserve the positive-normality.

ExXAMPLE 7. Let H be a 3-dimensional Hilbert space and let A and
T be defined on H as

0 0 0 1 0 0 0
A=10 0 0 and T=§ -1 11
0 01 -1 11

Then A is positive-normal, and if we take

1
X=:
2

R o QY
[l
— = O

then T'= XAX™!. Hence T is similar to A. Now
Ker(T) = {z = (z1,22,23) € H: 21 =73 + 23}

and
Ker(T*) = {z = (z1,%2,23) € H : x5 = —x3}.

Hence
Ker(T) € Ker(T™).
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Thus T is not positive-normal.

If T € L(H) is hyponormal and quasinilpotent (i.e. o(1T) = {0}), then
T is a zero operator. But it is not true for the case of positive-normal
operators.

ExAMPLE 8. If T is a unilateral weighted shift with positive weights
wy, such that w, — 0, then T is positive-normal by [12, Proposition
1.1] and o(T) = {0} by [6, # 96].

Let Q be the class of operators on H such that if ¢(7T) = {0} then
T = 0. For example, the class of hyponormal operators is included in

Q.

We say that an operator T is totally positive-normal (or totally posi-
normal) if the translates T — X are positive-normal for all A € C. Rhaly
gave an example of a positive-normal operator whose translate is not a
positive-normal operator ([12]).

It is well known ([12, Proposition 3.5]) that T is totally positive-
normal if and only if T is dominant.

THEOREM 9. If T € L(H) is totally positive-normal and T|p € Q
for every M € Lat(T), then T is isoloid (i.e. isoo(T) C op(T)).

Proof. Since T — X is positive-normal for all A € C, it suffices to show
that if 0 € isoo (1) then 0 € ¢,(T"). Choose p > 0 sufficiently small that
0 is the only point of ¢(T') contained in the circle |A| = p. Define

E 2/ (A = T)"'dA.
|A=p

Then F is the Riesz projection corresponding to 0. So M := EH is an
invariant subspace for 7. Moreover, M = {0} and o(T|r) € Q, and so0
T|am = 0. Thus M C Ker(T). Since Ker(T) C M is clear, we have that
M = Ker(T) # {0}. Therefore, T is not injective, i.e. 0 € o,(T). DO

CoROLLARY 10. Let T' € L(H) be totally positive-normal and T'| s €
Q for every M € Lat(T). If f is analytic on a neighborhood of o(T),

then
F(o(T) \ moo(T)) = o (£(T)) \ moo (f(T))-
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Proof. The proof follows from Theorem 9 and [10]. O

LeMMA 11. Let T € L(H) be totally positive-normal and let A\, u €
ap(T), where X # p. If z and y are eigenvectors of A and p, respectively,
then (z,y) = 0.

Proof. Since Ker(T — pu) C Ker(T™ — &Z) we can see that

Mz,y) = (Az,y) = (T2, y) = (7, T7y) = (z,0y) = p{z,y).
Hence we have that (z,y) = 0. a
LEMMA 12 ([2, Lemma 3]). Let T € L£L(H). Suppose that T satisfies
the following condition C':

C. If {\,} is an infinite sequence of distinct points of the set of eigen-
values of finite multiplicity of T and {z.} is any sequence of correspond-
ing normalized eigenvectors, then the sequence {z,,} does not converge.

Then
O'(T) \’/TO()(T) - ’LU(T)

THEOREM 13. If T € L(H) is totally positive-normal and T|y € Q
for every M & Lat(T), then T satisfies Weyl’s theorem.

Proof. If T is totally positive-normal, then by Lemma 11 T satisfies
the condition C. From Lemma 12 we have

a(T)\ moo(T) C w(T).

Conversely, without loss of generality it may be assumed that 0 € 7o (7).
Since 0 € iso(T'), as in the proof of Theorem 9, consider Riesz projection
E corresponding to 0. Then we also see that

EH =Kex(T) and S := T|gg. is invertible.
Therefore,

{0 0 _ . n
T_(O S) on H=FH&S EH.

K = (é 8) on H=EH® EH".
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Since by the assumption dim(EH) < oo, K is a finite rank operator and

I 0
rex=(10)

is invertible. Thus by [7, Theorem 6.5.5] T is Weyl, i.e. 0 ¢ w(T"). Hence
we have that o(T") \ moo(T) D w(T). O

COROLLARY 14. Let T € L(H) be totally positive-normal and T'|p €
Q for every M € Lat(T). If N is a nilpotent commuting with T, then
T + N satisfies Weyl's theorem.

Proof. The proof follows from Theorem 13 and [11, Theorem 3]. O

COROLLARY 15. Let T € L(H) be totally positive-normal and T'|p €
Q for every M € Lat(T). If F is a finite rank commuting with T, then
T + F satisfies Weyl’s theorem.

Proof. The proof follows from Theorem 9, Theorem 13 and [8, Theo-
rem 3.3]. O

THEOREM 16. Let T € L(H) be totally positive-normal and T\, € Q
for every M € Lat(T). If f is analytic on a neighborhood of o(T'), then
Weyl’s theorem holds for f(T').

Proof. The proof follows from Theorem 13, Corollary 10, and [8, The-
orem 2.2]. a
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