Clipart Image Retrieval System using Shape Information

모양 정보를 이용한 클립아트 이미지 검색 시스템

  • Cheong, Seong-Il (Dept. of Computer Engineering, Kyungpook National University) ;
  • Kim, Seung-Ho (Dept. of Computer Engineering, Kyungpook National University)
  • 정성일 (경북대학교 컴퓨터공학과) ;
  • 김승호 (경북대학교 컴퓨터공학과)
  • Published : 2002.02.01

Abstract

This paper presented a method of extracting shape information from a clipart image and then measured the similarity between clipart images using the extracted shape information. The results indicated that the outlines of the extracted clipart images were clearer that those of the original images. Previous methods of extracting shape information could be classified into outline-based methods and region-based methods. Included in the former category, the proposed method expressed the convex and concave aspects of an outline using the ratio of a rectangle. Accordingly, the proposed method was superior in expressing shape information than previous outline-based feature methods.

본 논문에서는 클립아트 이미지에서 모양 정보를 추출하고 이 정보를 이용하여 클립아트 이미지의 유사도를 측정하는 방법을 제안하였다. 본 논문에서 사용하는 클립아트 이미지는 자연영상에 비해 외곽선을 명확하게 추출할 수 있다는 장점이 있다. 이미지에서 모양 정보를 추출하는 이전의 방법은 모양의 외곽선을 이용하는 것과 영역을 이용하는 것으로 분류할 수 있는데 본 논문에서는 모양의 외곽선을 이용하는 것으로 외곽선의 오목한 부분과 볼록한 부분을 직사각형의 비율로 표현하는 방식을 제안하였다. 이렇게 함으로서 기존의 외곽선 기반 특징을 이용하는 방식보다 모양 정보를 더욱 잘 표현할 수 있었다.

Keywords

References

  1. B. Mehtre, M. Kankanhalli, and W. Lee, 'Shape measures for content based image retrieval : A comparison,' Information Processing & Management, Vol.33, No.3, pp. 319-337, 1997 https://doi.org/10.1016/S0306-4573(96)00069-6
  2. A. Jain and A. Vailaya, 'Shape-Based Retrieval: A case study with trademark image databases,' Pattern Recognition. Vol.31, No.9, pp. 1369-1390, 1998 https://doi.org/10.1016/S0031-3203(97)00131-3
  3. A. Bimbo and P. Pala, 'Visual image retrieval by elastic deformation of user sketches,' IEEE Trans. on PAMI, Vol.10, pp. 496-513, 1990
  4. A. Jain, Fundamentals of Digital Image Processing, Prentice Hall, 1989
  5. R. Gonzalez and R. Wood, Digital Image Processing, Addison Wesley, 1992
  6. W. Pratt, Digital Image Processing, John Wiley & Sons, 1991
  7. H. Freeman and L. Davis, 'A corner finding algorithm for chain coded curves,' IEEE Transaction on Computers, Vol.26, pp. 297-303, 1977 https://doi.org/10.1109/TC.1977.1674825
  8. E. Bribiesca and A. Guzman, 'Shape description and shape similarity for two dimensional region,' International Conference on Pattern Recognition, 1978
  9. Fundamentals of digital image processing A. Jian
  10. A. Jian, Fundamentals of digital image processing, Prentice Hall, 1989
  11. A. Khotanzad and Y. Hong , 'Invariants image recognition by Zerike Moments,' IEEE Trans on PAMI, Vol.12, No.5, pp. 489-497, 1990 https://doi.org/10.1109/34.55109
  12. A. Khotanzad and Y. Hong , 'Invariants image recognition by Zerike Moments,' IEEE Trans on PAMI, Vol.12, No.5, pp. 489-497, 1990 https://doi.org/10.1109/34.55109
  13. B. Mehtre, M. Kankanhalli, and W. Lee, 'Content-based image retrieval using a composite colorshape approach,' Information Processing & Management, Vol.34, No.1, pp. 109-120, 1998 https://doi.org/10.1016/S0306-4573(97)00049-6
  14. I. Kim, J. Lee, Y. Kwon, and S. Park, 'Contentbased image retrieval method using color and shape feature,' IEEE ICICS, pp. 948-952, 1907 https://doi.org/10.1109/ICICS.1997.652119
  15. C. Chen, 'Improved moment invariants for shape discrimination,' Pattern Recognition, Vol.26, No.5, pp. 683-686, 1993 https://doi.org/10.1016/0031-3203(93)90121-C