DOI QR코드

DOI QR Code

감마선(60Co) 조사에 의한 항진균 세균의 돌연변이체 유도

Mutant Induction of Several Antifungal Bacteria by Gamma Radiation (60Co)

  • 정혜영 (한국원자력 연구소, RI.방사선응용연구팀) ;
  • 김재성 (한국원자력 연구소, RI.방사선응용연구팀) ;
  • 조규성 (한국원자력 연구소, RI.방사선응용연구팀) ;
  • 이영복 (충남대학교 농업생명과학대학 원예학과) ;
  • 이영근 (한국원자력 연구소, RI.방사선응용연구팀)
  • Chung, Hye-Young (Radioisotop e.Radiation Application Team, Korea Atomic Energy Research Institute) ;
  • Kim, Jae-Sung (Radioisotop e.Radiation Application Team, Korea Atomic Energy Research Institute) ;
  • Cho, Kyu Seong (Radioisotop e.Radiation Application Team, Korea Atomic Energy Research Institute) ;
  • Lee, Young-Bok (Department of Horticulture, Chungnam National University) ;
  • Lee, Young-Keun (Radioisotop e.Radiation Application Team, Korea Atomic Energy Research Institute)
  • 발행 : 2002.09.30

초록

항진균 세균의 특성 및 기능변화 가능성을 조사하기 위하여 버섯폐배지, 온천수, 해조류 및 삼림토양으로부터 식물병원성 진균에 대한 8종의 항진균 활성 균주를 분리하였고 감마선($^{60}Co$)을 이용하여 $LD_{95}$에서 돌연변이체를 유도하였다. Bacillus circulans K1, Burkholderia gladioli K4와 Bacillus subtilis YS1은 12 종의 식물병원성 진균에 대해 항진균 활성을 보였다. 이들 균주의 방사선감수성 조사결과 B. gladioli K4는 감마선에 대한 높은 감수성을 보였으며, $D_{10}$ 값은 0.11 kGy 였다. 감마선에 의해 유도된 K1-1004와 YS1-1009는 Botryosphaeria dothidea에 대해 항진균 활성이 증가되었다. B. subtilis YS1의 돌연변이체인 YS1-1006과 YS1-1009는 tebuconazol과 copper hydroxide에 대해 농약 저항성을 나타냈다. SAR535, SAR5108 과 SAR5l18 돌연변이체는 야생형 균주인 Streptomyces sp. SAR01에 비해 5 종의 식물병원성 진균에 대해 항진균 활성이 없었다. 연구결과, 방사선을 이용하여 다양한 기능의 돌연변이체 유도가 가능하였다. 이를 이용하여 항진균 활성 관련 유전자 연구 및 균주개량이 가능할 것으로 사료된다.

In order to evaluate the antifungal activity of bacteria against plant pathogenic fungi, 8 bacteria were isolated from mushroom compost hot spring, seaweed, and forest soil and mutants from them were induced by $LD_{95}$ gamma radiation($^{60}Co$). Bacillus circulans K1, Burkholderia gladioli K4 and Bacillus subtilis YS1 showed wide antifungal spectrum against 12 kinds of plant pathogenic fungi. From the radiation sensitivity test, B. gladioli K4 was very sensitive to gamma radiation and its $D_{10}$ value was 0.11 kGy. Antifungal activities of B. circulans Kl-1004 and B. subtilis YS1-1009, which were induced by the radiation of $^{60}Co$ increased against Botryosphaeria dothidea. The mutant strains, B. subtilis YS1-1006 and B. subtilis YS1-1009 were resistant to tebuconazole and copper hydroxide. SAR535, SAR5108, and SAR5118 mutated from Streptomyces sp. SAR01 were antifungal activity deficient mutants against 5 kinds of plant pathogenic fungi compared to wild strain, so that they could be supposed to be model strains far studying antifungal mechanism. It is suggested that various functional types of mutants could be induced by gamma radiation and applied usefully.

키워드

참고문헌

  1. Weller, D. M (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria, Annu. Rev. Phytapathol, 26, 379-407 https://doi.org/10.1146/annurev.py.26.090188.002115
  2. O'Sullivan, D. B. and O'Gara, F. (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens, Microbiol. Rev. 56, 662-676
  3. Cook, R. J. (1993) Making greater use of introduced microorganisms for biological control of plant pathogens, Annu. Rev. Phytapathol. 31, 53-80 https://doi.org/10.1146/annurev.py.31.090193.000413
  4. Ryder, M. (1994) Key issues in the deliberate release of genetically manipulated bacteria, FEMS Microbiol. Ecol. 15, 130-145
  5. Parekh, S., Vinci, V. A. and Strobel. R. J. (2000) Improvement of microbial strains and fermentation processes, Appl. Microbiol. Biotechnol. 54, 287-301 https://doi.org/10.1007/s002530000403
  6. Weller, D. M. and Thomashow, L. S. (1994) Molecular Ecology of Rhizosphere Microorganisms, New York, VCH, p.1-18
  7. Ellis, R. J., Tinuns-Wilson, T. M., Beringer, J. E., Rhodes, D. Renwick, A., Stevenson, L. and Bailey, M. J. (1999) Ecological basis for biocontrol of dampingoff disease by Psedomonas fluorescens 54/96, J. Appl. microbiol. 87, 454-463 https://doi.org/10.1046/j.1365-2672.1999.00851.x
  8. Pourahmad, R. and Pakravan. R. (1997) Radiosterilization of disposable medical devices, Radiat. Phys. Chem 49, 285-286 https://doi.org/10.1016/S0969-806X(96)00140-5
  9. Becker, D. and Sevilla, M. (1993) The chemical consequences of radiation damage to DNA, Adv. Radiat. Bioi. 17, 121-180 https://doi.org/10.1016/B978-0-12-035417-7.50006-4
  10. Halliwell, B. and Aruoma, O. I. (1991) DNA damage by oxygenderived species. Its mechanism and measurement in mammalian cells, FEBS Lett. 281, 9-19 https://doi.org/10.1016/0014-5793(91)80347-6
  11. Hutchinson, F. (1985) Chemical changes induced in DNA by ionizing radiation, Prog. Nucl. Acids Res. Mol. Biol. 32, 115-154 https://doi.org/10.1016/S0079-6603(08)60347-5
  12. Muller, H. J. (1927) Artificial transmutation of the gene, Science 66, 84-87 https://doi.org/10.1126/science.66.1699.84
  13. Lee, Y. K., Chang, H. H., Kim, J. S., Kim, J. K. and Lee, K S. (2000) Lignocellulolytic mutants of Pleurotus ostreatus induced by gammaray radiation and their genetic similarities, Rad. Phys. Chem 57, 145-150 https://doi.org/10.1016/S0969-806X(99)00310-2
  14. Glenn, J. K. and Gold, M. H. (1983) Decolorization of several polymeric dyes by the lignindegrading basidiomycetes Phanerochaete chrysosporium, Appl. Environ. Microbiol. 45, 1741-1747
  15. Lee, Y. K., Kim, J. K., Song, I. G., Chung, H. Y. and Chang, H. H. (2001) Characteristics of antifungal bacterium, Bacillus subtilis YS1 and it's mutant induced by gamma radiation, Kor. J. Microbiol. 37, 305-311
  16. Sierra, G. (1957) A simple method for the detection of lipolytic activity of microoganisms and some observations on the influence of the contact between cells and fatty substrates, Antonie van Leeuwenhoek. 23, 15-22 https://doi.org/10.1007/BF02545855
  17. Wang, S. L., Shih, I. L., Wang, C. H, Tseng, K. C, Chang, W. T., Twu, Y. K Ro, J. J. and Wang, C. L. (2002) Production of antifungal compounds from chitin by Bacillus subtilis, Enz. Mcro. Tech. 31, 321-328 https://doi.org/10.1016/S0141-0229(02)00130-8
  18. Yu, G. Y., Sinclair, J. B., Hartman, G. L. and Bertagnolli, B. L. (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani, Soil Bioi. Biochem. 34, 955-963 https://doi.org/10.1016/S0038-0717(02)00027-5
  19. Jones, C. R. and Samac, D. A. (1996) Biological control of fungi causing alfalfa seedling dampingoff with a diseasesuppressive strain of Streptomyces, Biol. con. 7, 196-204 https://doi.org/10.1006/bcon.1996.0084
  20. Sabaratnam, S. and Traquair, J. A. (2002) Formulation of a Streptomyces biocontrol agent for the suppression of Rhizoctonia dampingoff in tomato transplants, Biol. con. 23, 245-253 https://doi.org/10.1006/bcon.2001.1014
  21. Peix, A., Mateos, P. F. Barrueco, C. R., Molina, E. M. and Velazquez, E. (2001) Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions, Soil Biol. Biochem. 33, 1927-1935 https://doi.org/10.1016/S0038-0717(01)00119-5
  22. Mao, w., Lewis, J. A., Lumsden, R. D. and Hebbar, K. P. (1998) Biocontrol of selected soilborne diseases of tomato and pepper plants, Crap Protec. 17, 535-542 https://doi.org/10.1016/S0261-2194(98)00055-6
  23. Farkas, J. (1998) Irradiation as a method for decontaminating food, a review, Inter. J. Food Microbiol. 44, 189-204 https://doi.org/10.1016/S0168-1605(98)00132-9
  24. Ahmad, M. S. and Shaukat, G. A. (1987) Higher antibiotic yielding mutants of Bacillus subtilis by gamma irradiation, The Nucleus 24, 23-26
  25. Saxena, D., Ben-Dov, E., Manasherob, R., Barak, Z., Boussiba, S. and Zaritsky, A (2002) A UV tolerant mutant of Bacillus thuringensis subsp. kurstaki producing melanin, Curr, Microbiol. 44, 25-30 https://doi.org/10.1007/s00284-001-0069-6
  26. Yutang, Q., Qingshan, S., liangqiu, L. and Xiaoping, L. (1995) Studies on the selection and cultivation of high inosine producing strain GMl-741 by irradiation of sup 6 sup 0 Co gamma rays, Acta Agric. Nucl. Sin. 9, 175-178