DOI QR코드

DOI QR Code

Increases in the Activities of Microsomal ATPases Prepared from the Roots of Lettuce Cultured in Salt-enhanced Nutrient Solutions

양액내 염류농도 증가에 의한 상추뿌리의 마이크로솜 ATPase 활성증가

  • Lee, Gyeong-Ja (Chungbuk Agricultural Research and Extension Services) ;
  • Kang, Bo-Koo (Chungbuk Agricultural Research and Extension Services) ;
  • Kim, Young-Kee (Department of Agricultural Chemistry, Chungbuk National University)
  • 이경자 (충북농업기술원 농업환경과) ;
  • 강보구 (충북농업기술원 농업환경과) ;
  • 김영기 (충북대학교 농화학과)
  • Published : 2002.06.30

Abstract

In order to investigate the mechanism of growth inhibition by salt stress, lettuces were grown hydroponically in three different nutrient solutions, normal and 30 mM or 50 mM $KNO_3$-added nutrient solutions, and the electrical conductivities of these solutions were 1.0, 4.5, and 6.5 dS/m, respectively. The activities of plasma and vacuolar $H^+$-ATPases in the root tissue of lettuce were measured by specific inhibitors, 100 ${\mu}M$ vanadate and 50 mM $NO_3^-$, respectively. Microsomal ATPase activity of lettuce grown in the normal nutrient solution was $356\pm1.5$ nmol/min/mg protein. When lettuces were grown in 30 mM and 50 mM $KNO_3$-added nutrient solutions, total activities of microsomal ATPases were increased by 1.6 and 1.9 times, respectively, and the increases were mainly mediated by vacuolar $H^+$-ATPase. These results show that lettuces adapt themselves to salt-stressed condition by increasing the activities of $H^+$-ATPases. Effects of various heavy metal ions were investigated on the microsomal ATPases and various metal ions at 100 $\mu M$ inhibited the activities by 10$\sim$25%. $Cu^{2+}$ showed the highest inhibitory effect on the vacuolar $H^+$-ATPase. These results suggest that lettuce increases the activities of root ATPases, specially that of vacuolar $H^+$-ATPase, in salt-stressed growth conditions and $Cu^{2+}$ could be a useful tool to control the activity of vacuolar $H^+$-ATPase.

염류장애에 의한 작물의 생육저해 원인을 밝혀내기 위하여 상추를 대조양액과 대조양액에 30 mM 및 50 mM $KNO_3$를 첨가하여 염류농도를 높인 양액 등 3가지 조건에서 재배하였으며, 이때 이들 양액의 EC는 각각 1.0, 4.5, 6.5 dS/m 이었다. 뿌리세포의 원형질막 및 액포막에 위치한 $H^+$-ATPase 활성은 각각에 특이적 저해제인 vanadate와 $NO_3^-$를 이용하여 측정하였다. 대조양액에서 재배한 상추 뿌리의 ATPase 활성은 $356\pm1.5$ nmol/min/mg protein이었으며, 30 mM과 50 mM $KNO_3$를 첨가한 양액에서는 활성이 대조활성에 비하여 각각 1.6배, 1.9배 증가하였다. 이것은 상추가 염류장애시 뿌리조직의 ATPase 활성증가를 통하여 적응함을 보여주는 것이며, 활성증가는 주로 액포막 $H^+$-ATPase 활성증가에 의해 이루어짐을 확인하였다. 마이크로솜 ATPase 활성에 미치는 여러 가지 중금속 이온들의 효과를 측정하였으며, 중금속 이온은 100 ${\mu}M$ 농도에서 콩류에 따라 활성을 10$\sim$25% 저해하였다. 특히, $Cu^{2+}$는 주로 액포막 $H^+$-ATPase 활성을 저해함을 확인하였다. 본 연구의 결과로부터 상추는 염류집적 환경에서 뿌리의 ATPase 활성, 특히 액포막에 위치한 $H^+$-ATPase 활성을 증가시켜 적응하며, $Cu^{2+}$는 주로 액포막 $H^+$-ATPase 활성을 저해하는 성분으로 뿌리의 ATPase 활성변화 연구에 유용하게 이용될 수 있음을 확인하였다.

Keywords

References

  1. 한기학, 박창규 (1989) 농업환경화학, 동화기술, p.31-45
  2. Lee, C. S., Huh, B. L., Song, Y. S. and Kwak, H. K. (1994) Revised rates of NPK fertilizers based on soil testing for vegetable crops, J. Kor. Soc. Soil Sci. Fert. 27(2), 85-91
  3. Lee, S. E. and Lee, C. S. (1994) Nutrient balance and application efficiency of nitrogen and potassium in saltaccumulated greenhouse soil, J. Kor. Soc. Soil Sci. Fert. 27(2), 78-84
  4. Song, Y. S., Lee, C. S., Kwak, H. K. and Park, Y. D. (1993) Recommendation of NPK fertilizers for chinese cabbage and spinach based on soil testing, J. Kor. Soc. Soil Sci. Fert. 26(1), 25-30
  5. Jung, Y. S. and Yoo, S. H. (1975) Effect of watering on eluviation of soluble salts in the vinyl house soils, J. Kor. Soc. Soil Sci. Fert. 8(2), 53-60
  6. Shin, W. K. (1987) Excessive salt accumulation, its effect on plant growth and salt elimination by watering in plastic film house soils, Ph. D. Thesis, Seoul National University
  7. Son, I. S., Jung, Y. T. and Yun, E. S. (1993) Status of vinyl house melon and watermelon cultivation and soil characteristics in yeongnam area, RDA. J. Agri. Sci. 35(1), 295-300
  8. 김복영 (1993) 토양오염실태와 개선대책. 환경보전형 농업을 위한 토양 관리심포지엄, 한국토양비료학회, 별권, p.68-98
  9. 김복영 (1993) 제련소 및 광산인근 논 토양중 중금속 함량조사, 농작물 피해조사, 농업 기술연구소보고서, p.74-94
  10. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L. and Daniels, R. B. (1993) Cadmium, Lead, Zinc, copper, and Nickel in Agricultural soils of the United States of America, J. Environ. Qual. 22, 335-348 https://doi.org/10.2134/jeq1993.00472425002200020015x
  11. 김복영 (1990) 토양오염과 개량대책, 농공기술, 7(2), 135-143
  12. Vulava, V. M., James, B. R. and Torrents, A. (1997) Copper solubility in Myersville B Horizon soil in the Presence of D1PA, Soil Sci. Soc. Am. J. 61, 44-52 https://doi.org/10.2136/sssaj1997.03615995006100010008x
  13. Jung, G. B., Kim, W. I. and Moon, K. H. (2000) Studies on the phytoextraction of cadimum and lead contaminated soils by plants cultivation, Korean J of Environ. Agri. 19(3), 213-217
  14. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Angle, J. S. and Baker, J. M. (1997) Phytoremediation of soil metals, Curr. Opinions Biotechnol. 8, 279-284 https://doi.org/10.1016/S0958-1669(97)80004-3
  15. Kim J. G. and Lee, S. H. (1999) Phytoremediation Proceedings of 30th Meeting & symposium on 'Remediation- Technology and Prospect' of the Korean, Society of Environmental Agriculture, 57-88
  16. Kim, J. G., Lim, S. K., Lee, S. H., Yoon, Y. M., Lee, C. H. and Jeong, C. Y. (1999) Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining ares for phytoremedation of heavy metal contaminated soils, Korean J. of Environ. Agric. 18(1), 28-34
  17. Lee, G. J,. Kang, B. G., Kim, H. J., Min, K. B. and Kim, Y. K. (2001) Growth and microsomal ATPase activity of lettuce(Lactuca sativa. L.) cultured in the KNO_{3}-added nutrient solution, Korean J. of Environ. Agric. 20(1), 28-33
  18. Jonathan, R. C. and Tomsett, A. B. (1992) Biogeochemistry of trace metals, Lewis Publishers, p.329-364
  19. Trivedi, S. and Erdei, L. (1992) Effects of cadimium and lead on the accumulation of $Ca^{2+}$ and $K^{+}$ and on the influx and translocation of $K^{+}$ in wheat of low and high $K^{+}$ status, Plant Physiol. 84, 94-100 https://doi.org/10.1111/j.1399-3054.1992.tb08770.x
  20. Fodor, E., Szab6-Nagy, A. and Erdei, L. (1995) The effects of cadimium on the fluidity and H^{+}-ATPase activity of plasma membrane from sunflower and wheat roots, J. Plant Physiol. 147, 87-92 https://doi.org/10.1016/S0176-1617(11)81418-5
  21. Kowalenko, C. G. (1980) Transport and transformation of fertilizer-N in a sandy field plot using tracer technique, Soil Sci. 129(4), 218-221 https://doi.org/10.1097/00010694-198004000-00004
  22. Pleysier, J. L. and Juo, A. S. R. (1982) Leaching of fertilizer ions in Ultisol from the high rainfall tropics: leaching through undisturbed soil column, Soil Sci. Soc. Am. J. 46, 754-760
  23. 박상근, 김광용, 이응호 (1990) 양액재배기술. 표준영농교본-71, 농촌진흥청, p.55-56
  24. Cho, K. H., Sakong, J. and Kim, Y. K. (1998) Characterization of microsomal ATPases prepared from tomato roots, Agric. Chem. Biotechnol. 41(2), 130-136
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. (1951) Protein measurement with the folin phenol reagent, J. Biol. Chem. 193, 265-275
  26. Niggli, V., Penniston, J. T. and Carafoli, E. (1979) Purification of the ($Ca^{2+}$-Mg^{2+})-ATPase from human erythrocyte membranes using a calmodulin affinity column, J. Biol. Chem. 254, 9955-9958
  27. Briskin, D. P., Leonard, R. T. and Hodges, T. K. (1987) Isolation of the plasma membrane: membrane markers and general principles, Methods Enzymol. 148, 542-546 https://doi.org/10.1016/0076-6879(87)48053-1
  28. Lew, R. R. and Spanswick, R. M. (1984) Protonpumping activities of soybean (Glycine max L.) root microsomes: localization and sensitivity to nitrate and vanadate, Plant Science Lett. 36, 187-193 https://doi.org/10.1016/0304-4211(84)90167-6
  29. Poole, R. J., Briskin, D. P., Kratky, Z. and Johnstone, R. M. (1984) Density gradient localization of plasma membrane and tonoplast from storage tissue of growing and dormant red beet, Plant Physiol. 74, 549-556 https://doi.org/10.1104/pp.74.3.549
  30. ONeill, S. D. and Spanswick, R. M. (1984) Effect of vanadate on the plasma membrane ATPase of red beet and corn, Plant Physiol. 75, 586-591 https://doi.org/10.1104/pp.75.3.586
  31. Sze, H. (1985) H^{+} translocating ATPases: advances using membrane vesicles, Ann. Rev. Plant Physiol. 36, 175-208 https://doi.org/10.1146/annurev.pp.36.060185.001135
  32. Ward, J. M.and Sze, H. (1992) Proton transport activity of the purified vacuolar H^{+}-ATPase from oats, Plant Physiol. 99, 925-931 https://doi.org/10.1104/pp.99.3.925
  33. Kiss, T. and Osipenko, O. N. (1994) Toxic effects of heavy metals on ionic channels, Pharmacol. Rev. 46(3), 245-263