DOI QR코드

DOI QR Code

Effects of Low Dose γ-Radiation on Photosynthesis of Red Pepper (Capsicum annuum L.) and the Reduction of Photoinhibition

저선량 γ선 조사가 고추의 광합성과 광 스트레스 경감에 미치는 효과

  • 이혜연 (한국원자력연구소 동위원소 방사선응용연구팀) ;
  • 백명화 (한국원자력연구소 동위원소 방사선응용연구팀) ;
  • 박순철 (한국원자력연구소 동위원소 방사선응용연구팀) ;
  • 박연일 (충남대학교 생물학과) ;
  • 김재성 (한국원자력연구소 동위원소 방사선응용연구팀)
  • Published : 2002.06.30

Abstract

The effect of low dose $\gamma$ radiation on photosynthesis and the reduction of photoinhibition in red pepper plant was investigated. The seedling height leaf width and leaf length of pepper were stimulated in plants grown from seeds irradiated with the low dose of 4 Gy. The $O_2$ evolution in the 4 Gy irradiation group was 1.5 times greater than in the control. To investigate the effect of low dose $\gamma$ radiation on response to high light stress, photoinhibition was induced in leaves of pepper by illumination of high light (900 $\mu mol/m^2/s$). Pmax was decreased with increasing illumination time by 20% in the control, while hardly decreased in the 4 Gy irradiation group. The photochemical yield of PSII, estimated as Fv/Fm, was decreased with increasing illumination time by 50% after 4 hours while Fo did not change. However, Fv/Fm in the 4 Gy irradiation group was decreased by 37% of inhibition, indicating that the photoinhibition was decreased by the low dose $\gamma$ radiation. Changes in the effective quantum yield of PSII, $\Phi_{PSII}$, and 1/Fo-1/Fm, a measure of the rate constant of excitation trapping by the PSII reaction center, showed similar pattern to Fv/Fm. And NPQ was decreased after photoinhibitory treatment showing no difference between the control and the 4 Gy irradiation group. These results showed the positive effect of low dose $\gamma$ radiation on the seedling growth and the reduction of photoinhibition.

고추 종자에 저선량 $\gamma$선을 조사시킨 고추 식물체의 생육과 광합성 능 및 광 스트레스 반응에 미치는 영향을 조사하였다. 저선량 4 Gy가 조사된 고추 식물체에서 광합성에 의한 산소발생이 대조구에 비해 1.5배정도 높은 것으로 나타났다. 고추 잎에 900 ${\mu}mol/m^2/s$의 빛의 세기로 광저해를 4시간 유도하였을 때 최대 광합성능 (Pmax)이 대조구의 경우 20%정도 감소되는 반면 4 Gy 조사구는 3% 정도의 감소를 보였다. Fv/Fm는 광저해가 진행됨에 따라 감소되는 경향을 보이며 대조구의 경우 4시간 처리시 Fv/Fm 값이 50% 정도 감소되는 것을 볼 수 있었다. 반면 4 Gy 조사구는 Fv/Fm값이 대략 37%정도 감소되어 대조구에 비해 광 스트레스에 대해 덜 민감한 것으로 나타났다. Fo는 광저해가 진행됨에 따라 거의 변화가 없었으며 대조구나 4 Gy조사구 사이의 차이도 거의 없는 것으로 나타났다. 광계II의 광양자 수율인 $\Phi_{PSII}$과 광계II 반응중심에 의한 여기 포획률을 나타내주는 1/Fo-1/Fm 또한 광저해가 진행됨에 따라 감소되었으며 4시간을 처리했을 경우 각각 대조구는 47%, 4 Gy 조사구는 30%의 감소를 볼 수 있었다. 비광화학적 소멸인 NPQ는 광저해가 진행됨에 따라 감소되는 경향을 보였으나 대조구와 4 Gy 조사구간에 차이는 없는 것으로 나타났다. 이러한 결과를 볼 때 종자의 종피를 투과한 저선량의 $\gamma$선이 식물의 광합성을 증대시키고 동시에 광 스트레스에 대한 저해를 감소시키는 것으로 보인다.

Keywords

References

  1. 大山ハルミ, 山田 武. (1997) 底線量 放射線の 健康影響-放射線ホルミッヌ. Radioisotopes 46, 360-370 https://doi.org/10.3769/radioisotopes.46.360
  2. Ferullo, J.-M., Nespoulous, L. and Triantaphylides, C. (1994) Gamma-ray-induced changes in the synthesis of tomato pericarp protein, Plant Cell Environ. 17, 901-911 https://doi.org/10.1111/j.1365-3040.1994.tb00319.x
  3. Casarett, A. P. (1968) Radiation chemistry and effects of gamma radiation on the cell. In Casarett, A. P. (ed.), Radiation Biology, Prentice-Hall, Englewood Cliffs, N. J.
  4. Riov, J., Monselise, S. P. and Kahan, R. S. (1970) Radiation damage to grape fruit in relation to ethylene production and phenylalanine ammonia-lyase activity, Radiat. Bot. 10, 281-286 https://doi.org/10.1016/S0033-7560(70)80022-9
  5. Pendharkar, M. B. and Nair, P. M. (1975) Induction of phenylalanine ammonia-layse (PAL) in gamma irradiated potatoes, Radiat. Bot. 15, 191-197 https://doi.org/10.1016/S0033-7560(75)80007-X
  6. Frylink, L., Dubery, I. A. and Schabort, J. C. (1987) Biochemical changes involved in stress response and ripening behavior of gamma-irradiated mango fruit, Phytochemistry 26, 681-686
  7. Young. R. E. (1965) Effect of ionizing radiation on respiration and ethylene production of avocado fruit, Nature 205, 1113-1114 https://doi.org/10.1038/2051113a0
  8. Abdel-Kader A. S., Moris, L. L. and Maxie, E. C. (1968) Physiological studies of gamma irradiated tomato fruits, I. Effects on respiratory rate, ethylene production and ripening, Proc, Am. Soc. Hortic. Sci. 92, 553-567
  9. Lee, T. H., "McGlasson, W. B. and Edwards, R. A. (1968) Effect of gamma radiation on tomato fruit picked at four stages of development, Radiat. Bot. 8, 259-267 https://doi.org/10.1016/S0033-7560(68)80023-7
  10. Akamine, E. K. and Goo, T. (1971) Respiration of gamma-irradiated fresh fruits, J. Food Sci. 36, 1074-1077 https://doi.org/10.1111/j.1365-2621.1971.tb03349.x
  11. Romani, R. J. (1984) Respiration, ethylene, senescence, and homeostasis in an integrated view of postharvest life, Can. J. Bot. 62, 2950-2955 https://doi.org/10.1139/b84-394
  12. Luckey, T. D. (1980) Hormesis with ionizing radiation, CRC press, Inc. Boca Raton, Fl
  13. Miller, M. W. and Miller, W. M. (1987) Radiation hormesis in plants, Health Physics. 52, 607-616 https://doi.org/10.1097/00004032-198705000-00012
  14. Kim, J. S., Song, H. S., Kim, J. K., Lee, Y. K. and Lee, Y. B. (1998) Stimulation effect of early growth in crops by low dose radiation, Korean J. Environ. Agri. 17, 156-159
  15. Kim, J. S., Lee, Y. K., Song, H. S., Park, H. S. and Kim, J. K. (1999) Effects of low dose ionizing radiation on the growth and yield of soybean cultivars, Korean J. Environ. Agri. 18, 66-69
  16. Simon, J., Digleria, M. and Lang, Z. (1981) Comparative studies on the effects of low doses X-ray and gamma irradiation on the amylase activity of maize seedling, Proc. European Soc. for Nuclear Methods in Agriculture, Aberdean, U.K.
  17. Kim, J. S., Lee, E. K., Song, J. Y., Kim, H. G. and Lee, Y. B. (2000) Induction of resistance against Plytophthora Blight of pepper by low dose gamma ray radiation, Korean J. Environ. Bio. 18, 47-51
  18. Kim, J. S., Lee, Y. K., Back, M. W., Lee, Y. B. and Park, Y. S. (1999) Influence of the low dose \gamma-ray radiation on the old seed germination and growth of chinese ecabbage, Korean J. Environ. Biol. 17, 11-15
  19. Kim, J. S., Lee, Y. K., Park, H. S., Back, M. H. and Chung, K. H. (2000) Effects of low dose gamma radiation on the early growth and physiological activity of gourd (Lagenaria leucantha L.), Korean J. Environ. Agri. 19, 142-146
  20. Kim, J. S., Kim, J. K., Back, M. H. and Kim, D. H. (1999) Effects of low dose \gamma-ray on the early growth of tomato and the resistance to subsequent high doses of radiation, J. Korean Asso. Radiat. Prot. 24, 123-129
  21. Kim, J. S., Lee, Y. K., Park, H. S., Back, M. H. and Kim, D. H. (2000) Influence of low dose gamma radiation on the growth of maize (Zea mays L.) varieties, Korean J. Environ. Agri. 19, 328-331
  22. Kim, J. S., Lee, E. K., Back, M. H., Park, H. S. and Kim, K. H. (1999) Effect of low dose of gamma radiation on the growth of groundnut (Arachis hypogaea L.), Korean J. Environ. Biol. 17, 257-261
  23. Hodges, M, Cornic, G. and Briantais, J.-M (1989) Chlorophyll fluorescence from spinach leaves: resolution of non-photochemical quenching, Biochim Biophys. Acta. 974, 289-293 https://doi.org/10.1016/S0005-2728(89)80246-4
  24. Schreiber, U., Schliwa, U. and Bilger, W. (1986) Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer, Photosynth. Res. 10, 51-62 https://doi.org/10.1007/BF00024185
  25. Krause, G. H. and Weis, E. (1984) Chlorophyll fluorescence as tool in plant physiology, II. Interpretationn of fluorescence signals, Photosynth. Res. 5, 139-157 https://doi.org/10.1007/BF00028527
  26. Krause, G. H. and Weis, E. (1991) Chlorophyll fluorescence and photosynthesis: The basis, Ann. Rev. Plant Physiol, Plant Mol. Biol. 42, 313-349 https://doi.org/10.1146/annurev.pp.42.060191.001525
  27. Park, Y. I. and Hong, Y. N. (1994) Phosphate-deficiency reduces the electron transport capacities of thylakoid membranes through limiting photosystem II in leaves of chinese cabbage, J. Photosci. 1, 95-105
  28. Havaux, M., Strasser, R. J. and Greppin, H. (1991) A theoretical and experimental analysis of the qP and qNP coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events, Photosynth. Res. 27, 41-55 https://doi.org/10.1007/BF00029975
  29. Porra, R. J., Thompson, W. A. and Kriedemann, P. E. (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b with four different solvents: verification of the concentration of chlorophyll by atomic absorption spectroscopy, Biochim Biophys. Acta. 975, 384-394 https://doi.org/10.1016/S0005-2728(89)80347-0
  30. Oquist, G., Chow, W. S. and Anderson, J. M. (1992) Photoinhibition of photosynthesis represents a mechanism for long-term regulation of photosytem II, Planta 186, 450-460
  31. Izvorska, N. (1973) The gamma ray effect on the growth, productivity and some biochemical changes of pepper, Inst. Fiziol. Rast. Bulg. Akad. Nauk. 18, 79-83
  32. Kim, J. S., Chae, S. K., Back, M. H. and Kim, D. H. (2000) Effects of low dose radiation on the radiosensitivity of soybean(Glycine max L.) plant, Korean J. Environ. Agric. 19, 324-327
  33. Kim, J. S., Back, M. H., Kim, D. H., Lee, Y. K. and Lee, Y. B. (2001) Effects of low dose gamma radiation on the early growth of pepper and the resistance to subsequent high dose of radiation, Korean J. Environ. Biol. 19, 71-77
  34. Koepp, R. and Kramer, M. (1981) Photosynthetic activity and distribution of photoassimilated $^{14}C$ in seedlings of Zea mays grown from gamma-irradiated seeds, Photosynthetica, 15, 484-493
  35. Lee, E. K., Kim, J. S., Lee, Y. K. and Lee, Y. B. (1998) Effect of low dose \gamma-ray irradiation on the germination and growth in red pepper (Capsicum annuum L.), J. Kor. Soc. Hort. Sci. 39, 670-675
  36. Anderson, J. M., Chow, W. S. and Goodchild, D. J. (1988) Thylakoid membrane organisation in Sun/Shade Acclimation In Ecology of photosynthesis in Sun and Shade, J. R. Evans, S. von Caemmerer and W.W. Adams Ⅲ (eds), CSIRO, Melbourne, p.11-26
  37. Vlasyuk, P. A. (1964) Effect of ionizing radiation on the physiological-biochemical properties and metabolism of agricultural plants, Inst. Fiziol. Biokhim, Rast. SSR. 24-31
  38. Kuzin, A. M. (1955) The utilization of ionizing radiation in agriculture. Proc. Int. Conf. Peaceful Uses Atomic Energy, United Nations, Geneva, 12, 149-151
  39. Skok, J., Chorny, W. and Rakosnik, E. J. (1965) An examination of stimulatory effects of ionizing radiation in plants, Radiat. Bot. 5, 281-292 https://doi.org/10.1016/S0033-7560(65)80016-3
  40. Grisenko, G. V. and Mazhara, V. M. (1968) Ionizing and other types of radiation and their influence on the resistance of corn to stalk and root rot. Tr. Vses. Sovesch. Immunitetu Rast. 2, 21-25
  41. Holzwarth, A. R. (1987) Picosecond fluorescence spectroscopy and energy transfer in photosynthetic antenna pigments. In The Light Reactions, J. Bafber (ed.), Elsevier, Amsterdam, p.95-158
  42. Lavorel, J. and Etienne, A. L. (1979) In vivo chlorophyll fluorescence. In Processes of Photosynthesis, J. Barber (ed.), Elsevier, Amsterdam, p.203-268
  43. Papageorgiou, G. (1975) Chlorophyll fluorescence. An intrinsic probe of photosynthesis. In Bioenergectics of Photosynthesis, J. Amesz and Govindjee (eds.). Academic Press, New York, p.587-619
  44. Imbrie, C. W. and Murphy, T. M. (1984) Mechanism of photoinactivation of plant plasma membrane ATPase, Photochem. Photobiol. 40, 243-2413 https://doi.org/10.1111/j.1751-1097.1984.tb04582.x
  45. Lee, H. Y., Chow, W. S. and Hong, Y. N. (1999) Photoinactivation of photosystem II in leaves of Capsicum annuum, Physiol. Plant. 105, 377-384

Cited by

  1. Alterations in the photosynthetic pigments and antioxidant machineries of red pepper (Capsicum annuum L.) seedlings from gamma-irradiated seeds vol.47, pp.4, 2004, https://doi.org/10.1007/BF03030546
  2. Effect of gamma radiation on mutant induction of Fagopyrum dibotrys Hara vol.46, pp.3, 2008, https://doi.org/10.1007/s11099-008-0066-0
  3. Effects ofin Planta gamma-irradiation on growth, photosynthesis, and antioxidative capacity of red pepper (Capsicum annuum L.) plants vol.48, pp.1, 2005, https://doi.org/10.1007/BF03030564
  4. Thermal Dissipation of Excess Light inArabidopsis Leaves is Inhibited after Gamma-irradiation vol.51, pp.1, 2008, https://doi.org/10.1007/BF03030741
  5. Physiological Responses of Three Different Plants to Low-Doses of 137Cs-γ Irradiation vol.955-959, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.955-959.581
  6. A Novel Radiation Method for Preparing MnO2/BC Monolith Hybrids with Outstanding Supercapacitance Performance vol.8, pp.7, 2018, https://doi.org/10.3390/nano8070533
  7. pigment mutant induced by gamma irradiation vol.66, pp.3, 2018, https://doi.org/10.1111/pre.12216
  8. Alleviation of salt stress by low dose ?-irradiation in rice vol.49, pp.2, 2005, https://doi.org/10.1007/s10535-005-3276-3