DOI QR코드

DOI QR Code

Effect of Phenobarbital Sodium and 3-Methylcholanthrene on Metabolism of 14C-carbofuran in Rat

쥐에서 Phenobarbital Sodium 및 3-Methylcholanthrene이 14C-carbofuran의 대사에 미치는 영향

  • Rim, Yo-Sup (Division of Environment and Agricultural Science, College of Agriculture and Life Science, Sunchon National University) ;
  • Han, Seong-Soo (Department of Agricultural Chemistry, College of Life Science and Natural Resources, Wonkwang University)
  • 임요섭 (순천대학교 농업생명과학대학 환경농업과학부) ;
  • 한성수 (원광대학교 생명자원과학대학 농화학과)
  • Published : 2002.03.31

Abstract

In order to elucidate the effect of phenobarbital sodium (PB) and 3-methylcholanthrene (3-MC) on metabolism of insecticide carbofuran in rat. Carbofuran metabolites and its formation rates were determined when orally administered $^{14}C$-carbofuran alone and its combination with PB or 3-MC to rat. $^{14}C$-carbofuran administered orally, alone or in combination with PB or 3-MC, was secreted rapidly within 48 hrs. That is, 79.9 to 81.1% of the original radioactivity was secreted into the urine and 5.7 to 6.5% into the feces. The secretion rate was faster in the combined administration than that in carbofuran alone. Metabolites of carbofuran in main organs, urine, feces and blood of rat were largely 3-hydroxycarbofuran, 3-ketocarbofuran, 3-hydroxycarbofuran phenol, 3-ketocarbofuran phenol, and carbofuran phenol, the major ones being 3-hydroxycarbofuran and 3-ketocarbofuran, respectively, in all administrations of carbofuran alone, carbofuran+PB and carbofuran+3-MC. In addition, formation rate of the two major metabolites detected in the urine was 17.4% and 12.8%, respectively, when carbofuran alone was administered. Meanwhile, when carbofuran was administered with PB or 3-MC, they were 8.6% and 23.5, repectively. These results indicate that the oral administration of PB or 3-MC can reduce carbofuran toxicity by fastening and stimulating the carbofuran metabolism in rat.

쥐에서 carbofuran 대사에 미치는 phenobarbital sodium (PB) 또는 3-methylcholanthrene (3-MC)의 영향을 조사하기 위하여 쥐에 이들을 단독 또는 조합으로 경구투여한 후 일정 간격으로 쥐의 주요 장기, 대변, 소변 및 혈액 중 대사산물의 종류와 생성율을 조사하였다. Carbofuran 단독투여와 carbofuran과 PB 또는 3-MC 조합투여 모두 경구투여 후 48시간 이내에 빠르게 배설되어 $^{14}C$-carbofuran 총 투여량의 79.9$\sim$81.1%가 소변으로, 5.7$\sim$6.5%가 대변으로 배설되었는데, 배설속도는 carbofuran 단독투여 보다 carbofuran과 PB 또는 3-MC 조합투여에서 빨랐다. 쥐의 주요 장기, 대소변 및 혈액 중의 carbofuran의 대사산물은 공통적으로 3-hydroxycarbofuran, 3-ketorarbofuran, 3-hydroxycarbofuran phenol, 3-ketocarbofuran phenol과 carbofuran phenol이었고, 주요 대사산물은 3-hydroxycarbofuran과 3-ketocarbofuran이었는데, 주요 대사산물의 경우 carbofuran만의 투여에서는 3-hydroxycarbofuran이었으나 carbofuran과 PB 또는 3-MC 조합투여는 3-ketocarbofuran이었다. 소변 중 carbofuran의 2가지 주 대사산물의 생성율은 carbofuran 단독투여시 3-hydroxycarbofuran 17.4%와 3-ketocarbofuran 12.8%이었고, carbofuran과 PB 또는 3-MC 조합투여시 3-hydroxycarbofuran 8.6%와 3-ketocarbofuran 23.5%로서, carbofuran 단독투여와 carbofuran과 PB 또는 3-MC 투여사이에 대사산물의 종류는 같았으나 생성율에는 큰 차이가 있었다. 이와 같은 결과는 쥐에 carbofuran 투여 후 PB나 3-MC를 투여함으로써 carbofuran의 대사가 빠르게 이루어지고, 주 대사산물 중3-hydroxycarbofuran보다 독성 이 낮은 3-ketocarbofuran으로의 대사가 빠르게 이루어지기 때문에 carbofuran의 독성이 경감되어 쥐가 생존할 수 있는 것으로 판단된다.

Keywords

References

  1. Chung, J. H. (1978) Hazards due to organic phosphorus pesticides, J. of Korean Medical Association 21, 359-364
  2. Kuhr, R. J. (1968) Metabolism of carbamate insecticide chemicals in plants and insects, J. Agr. Food Chem. 18, 1023-1030 https://doi.org/10.1021/jf60172a042
  3. Agricultural Chemicals Industrial Association (1996) Agrochemicals Year Book, Munseon Planning Press, Seoul, Korea
  4. Loewenstein, Y., Denarie, M., Zakut, H. and Soreq, H. (1993) Molecular dissection of cholinesterase domains responsible for carbamate toxicity, Chem. Biol. Interact. 87, 209-216 https://doi.org/10.1016/0009-2797(93)90044-Y
  5. Lee, Y. D. (1988) Studies on the metabolism and fate of carbofuran in rice paddies, Ph. D. Thesis, Seoul National University, Seoul
  6. Chaudhry, G. R. and Ali, A. N. (1988) Bacterial metabolism of carbofuran. Appl. Environ. Microbiol. 54, 1414-1419
  7. Park, H. M. (1989) Studies on the resistance mechanism of the brown planthopper (Nilaparvata lugens STAL.) against fenobucarb, carbofuran and diazinon, Ph. D. Thesis, Seoul National University, Seoul
  8. Metcalf, R. L., Fukuto, T. R., Collins, C., Borck, K., El-Aziz, S. A., Munoz, R. and Cassil, C. C. (1968) Metabolism of 2,2-dimethyl-2,3-dihydrobenzo-furanyl-7-N-methylcarbamate (furadan) in plants, insects, and mammals, J. Agr. Food Chem. 16, 300-311 https://doi.org/10.1021/jf60156a033
  9. Dorough, H. W. (1968) Metabolism of furadan(NIA-10242) in rats and houseflies, J. Agr. Food Chem. 16, 319-325 https://doi.org/10.1021/jf60156a035
  10. Lichtenstein, E. P., Kunstman J. L., Fuhremann, T. W. and Liang. T. T. (1979) Effects of atrazine on the toxicity; penetration and metabolism of carbofuran in the housefly, J. Econ. Entomol. 72, 780-788
  11. Han, S. S. and Rim, Y. S. (1998) Effect of phenobarbital sodium and 3-methylcholanthrene on metabolism in vitro and toxicity of $^{14}C-carbofuran$ in rat, Kor. J. of Pesticide Science 2, 29-38
  12. Rim, Y. S. (1997) Elucidation of the mechanisms on inhibition of the enzyme activities of rats by the insecticide carbofuran and detoxification by phenobarbital sodium or 3-methylcholanthrene, Ph. D. Thesis, Wonkwang University, Iksan, Jeonbug, Korea
  13. Holden, E. R. and Cook, R. F. (1986) Pesticide Analytical Manual(vol. Ⅱ), FDA, USA
  14. Kuhr, R. J. and Dorough, H. W. (1976) Carbamate Insecticides; Chemistry, Biochemistry, and Toxicology, CRC Press, USA