DOI QR코드

DOI QR Code

Characterization of Lactobacillus acidophilus Isolated from Piglets and Chicken

  • Ahn, Y.T. (Lab. of Milk Science and Microbiology, School of Agricultural Biotechnology, Seoul National University) ;
  • Lim, K.L. (Lab. of Milk Science and Microbiology, School of Agricultural Biotechnology, Seoul National University) ;
  • Ryu, J.C. (Lab. of Milk Science and Microbiology, School of Agricultural Biotechnology, Seoul National University) ;
  • Kang, D.K. (Bio-Resourecs Institute, EASY BIO System, Inc.) ;
  • Ham, J.S. (National Livestock Research Institute, Rural Development Administration) ;
  • Jang, Y.H. (Andong Science College) ;
  • Kim, H.U. (Lab. of Milk Science and Microbiology, School of Agricultural Biotechnology, Seoul National University)
  • Received : 2002.06.25
  • Accepted : 2002.08.22
  • Published : 2002.12.01

Abstract

Lactic acid bacteria were isolated from piglets and chicken and characterized. Lactic acid bacteria showing resistance to low pH and bile, adhesion to intestinal epithelium cells, and the inhibition of Escherichia coli and Salmonella spp. were identified as Lactobacillus acidophilus. L. acidophilus PF01 survived for 2 h in MRS broth adjusted to pH 2. L. acidophilus CF07 was less resistant than L. acidophilus PF01 to pH 2, but survived at pH 2.5 for 2 h. Both of isolates were able to grow in MRS broth containing 0.3% (w/v) bile, with L. acidophilus CF07 being more tolerant to bile than L. acidophilus PF01. L. acidophilus PF01 and CF07 adhered specifically to the duodenal and jejunal epithelium cells of piglet, and the cecal and duodenal epithelium cells of chicken, respectively. Both of isolates did not adhere to the epithelium cells of the various animal intestines from which they were isolated. When L. acidophilus was cultured with E. coli and Salmonella spp. in MRS broth, MRS broth containing 2% skim milk powder or modified tryptic soy broth at $37^{\circ}C$, L. acidophilus PF01 and CF07 inhibited the growths of E. coli K88 and K99, and S. enteritidis and S. typhimurium, respectively. Both of isolates were found to possess the essential characteristics of probiotic lactic acid bacteria for piglet and chicken.

Keywords

References

  1. Ahn, Y. T., P. K. Shin and H. U. Kim. 1997. Growth Inhibition of Escherichia coli O157:H7 and Salmonella typhimurium by lactic acid bacteria and bifidobacteria. Kor. J. Food Hyg. Safety. 12:181-187.
  2. Ahn, Y. T., Y. H. Kim, E. J. Jung, J. H. Lim, H. J. Kang and H. U. Kim. 1999. Resistance of lactobacilli and bifidobacteria isolated from fermented milk products to low pH and bile acid. Kor. J. Anim. Sci. 41:335-342.
  3. Baranyi, J. and T. A. Roberts. (1994). A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23:277-294. https://doi.org/10.1016/0168-1605(94)90157-0
  4. Barrow, P. A., B. E. Brooker, R. Fuller and M. J. Newport. 1980. The attachment of bacteria to the gastric epithelium of the pig and its importance in the microecology of the intestine. J. Appl. Bacteriol. 48:147-154. https://doi.org/10.1111/j.1365-2672.1980.tb05216.x
  5. Conway, P. L., S. L. Gorbach and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1-12. https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  6. De Man, J. C., M. Rogosa and M. E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23:130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  7. Fuller, R. 1975. Nature of the determinant responsible for the adhesion of lactobacilli to chicken crop epithelial cells. J. Gen. Microbiol. 87:245-250. https://doi.org/10.1099/00221287-87-2-245
  8. Fuller, R. 1978. Epithelial attachment and other factors controlling the colonization of the intestine of the gnotobiotic chicken by lactobacilli. J. Appl. Bacteriol. 45:389-395. https://doi.org/10.1111/j.1365-2672.1978.tb04240.x
  9. Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  10. Gilliland, S. E. 1979. Beneficial interrelationships between certain microorganisms and humans; candidate microorganisms for use as dietary adjuncts. J. Food Prot. 42:164-167. https://doi.org/10.4315/0362-028X-42.2.164
  11. Gilliland, S. E. and M. L. Speck. 1977. Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40:820-823. https://doi.org/10.4315/0362-028X-40.12.820
  12. Gilliland, S. E., T. E. Staley and L. J. Bush. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. J. Dairy Sci. 67:3045-3051. https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  13. Gopal, A., N. P. Shah and H. Roginski. 1996. Bile tolerance, taurocholate deconjugation and cholesterol removal by Lactobacillus acidophilus and Bifidobacterium spp.. Milchwissenschaft. 51:619-623.
  14. Havenaar, R., B. T. Brink and J. H. J. Huis in'T Veld. 1992. Selection of strains for probiotic use. In: Probiotics (Ed. R. Fuller). CHAPMAN & HALL, London. pp.209-224.
  15. Hechard, Y., M. Dheibomez, Y. Cenatiempo and F. Letellier. 1990. Antagonism of lactic acid bacteria from goats' milk against pathogenic strains assessed by the 'sandwich method'. Lett. Appl. Microbiol. 11:185-188. https://doi.org/10.1111/j.1472-765X.1990.tb00156.x
  16. Jin, L. Z, Y. W. Ho, M. A. Ali, N. Abdullah and S. Jalaludin. 1996a. Effect of adherent Lactobacillus spp. on in vitro adherence of salmonellae to the intestinal epithelial cells of chicken. J. Appl. Bacteriol. 81:201-206. https://doi.org/10.1111/j.1365-2672.1996.tb04501.x
  17. Jin, L. Z., Y. W. Ho, N. Abdullah, M. A. Ali and S. Jalaludin. 1996b. Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol. 23:67-71. https://doi.org/10.1111/j.1472-765X.1996.tb00032.x
  18. Jin. L. Z., Y. W. Ho, N. Abdullah and S. Jalaludin. 1998. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett. Appl. Microbiol. 27:183-185. https://doi.org/10.1046/j.1472-765X.1998.00405.x
  19. Kandler, O. and N. Weiss. 1986. Genus Lactobacillus. In: Bergey's Manual of Systematic Bacteriology, Vol. 2 (Ed. P. H. A. Sneath, N. S. Mair, M. E. Sharpe and J. G. Holt). WILLIAMS & WILKINS, Baltimore. pp.1209-1234.
  20. Lee, Y. K. and S. Salminen. 1995. The coming of age of probiotics. Trends Food Sci. Technol. 6:241-245. https://doi.org/10.1016/S0924-2244(00)89085-8
  21. Mayra-Makinen, A., M. Manninen and H. Gyllenberg. 1983. The adherence of lactic acid bacteria to the columnar epithelial cells of pigs and calves. J. Appl. Bacteriol. 55:241-245. https://doi.org/10.1111/j.1365-2672.1983.tb01321.x
  22. Ouwehand, A. C., P. V. Kirjavainen, C. Shortt and S. Salminen. 1999. Probiotics: mechanisms and established effects. Int. Dairy J. 9:43-52. https://doi.org/10.1016/S0958-6946(99)00043-6
  23. Pettersson, L., W. Graf, L. Alm, S. Lindwall and A. Stromberg. 1983. Survival of Lactobacillus acidophilus NCDO 1748 in the human gastrointestinal tract: I. Incubation with gastric juice in vitro. In: XV Symp. Swed. Nutr. Found, Stockholm. pp. 123-125.
  24. Reinheimer, J. A. M. R. Demkow and M. C. Candioti. 1990. Inhibition of coliform bacteria by lactic cultures. Aust. J. Dairy Technol. 45:5-9.
  25. Suegara, N., M. Morotomi, T. Watanabe, Y. Kawai and M. Mutai. 1975. Behaviour of microflora in the rat stomach: Adhesion of lactobacilli to the keratinized epithelial cells of the rat stomach in vitro. Infect. Immun. 12:173-179.
  26. Tannock, G. W. 1997. Probiotic properties of lactic acid bacteria: Plenty of scope for fundamental R & D. Trends Biotechnol. 15:270-274. https://doi.org/10.1016/S0167-7799(97)01056-1

Cited by

  1. Probiotic Properties of Pediococcus pentosaceus SH-10 Isolated from the Hard Clam Meretrix meretrix Shikhae vol.44, pp.6, 2011, https://doi.org/10.5657/KFAS.2011.0605
  2. PF01 vol.114, pp.1, 2012, https://doi.org/10.1111/jam.12027
  3. by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage vol.52, pp.2, 2017, https://doi.org/10.1111/ijfs.13308
  4. Purification of Antilisterial Peptide (Subtilosin A) from Novel Bacillus tequilensis FR9 and Demonstrate Their Pathogen Invasion Protection Ability Using Human Carcinoma Cell Line vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.01910
  5. Genome Sequence of Lactobacillus johnsonii PF01, Isolated from Piglet Feces vol.193, pp.18, 2011, https://doi.org/10.1128/JB.05640-11
  6. Microbiota alteration is associated with the development of stress-induced despair behavior vol.7, pp.1, 2017, https://doi.org/10.1038/srep43859
  7. Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products Through Its Production Chain vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02099
  8. Proteomic and Transcriptional Analysis of Lactobacillus johnsonii PF01 during Bile Salt Exposure by iTRAQ Shotgun Proteomics and Quantitative RT-PCR vol.12, pp.1, 2002, https://doi.org/10.1021/pr300794y
  9. Prevalence of bacteria resistant to antibiotics and/or biocides on meat processing plant surfaces throughout meat chain production vol.161, pp.2, 2002, https://doi.org/10.1016/j.ijfoodmicro.2012.11.028
  10. Complete Genome Sequencing and Comparative Genome Characterization of Lactobacillus johnsonii ZLJ010, a Potential Probiotic With Health-Promoting Properties vol.10, pp.None, 2002, https://doi.org/10.3389/fgene.2019.00812
  11. Antimicrobial Activity and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Saudi Arabian Ocimum basilicum Leaves Extracts vol.13, pp.2, 2002, https://doi.org/10.22207/jpam.13.2.30
  12. Growth and effect of garlic (Allium sativum) on selected beneficial bacteria vol.39, pp.4, 2019, https://doi.org/10.1590/fst.10618
  13. Ex-Vivo Adhesion of Enterococcus faecalis and Enterococcus faecium to the Intestinal Mucosa of Healthy Beagles vol.11, pp.11, 2002, https://doi.org/10.3390/ani11113283