References
- Armengaud, J., Gaillard, J. and Timmis, K N. (2000) A second [2Fe-2S] ferredoxin from Sphingomonas sp. Strain RW1 can function as an electron donor for the dioxin dioxygenase. J. Bacterial. 182, 2238-2244. https://doi.org/10.1128/JB.182.8.2238-2244.2000
- Bartels, I., Knackrnuss, H. J. and Reineke, W. (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomanas putida mt-2 by 3-halocatechols. Appl. Environ. Microbial. 47, 500-505.
- Cerdan, P., Wasserfallen, A., Rekik, M., Tunrnis, K N. and Harayama, S. (1994) Substrate specificity of catechol 2,3- dioxygenase encoded by TOL plasmid pWW0 of Pseudomonas putida and its relationship to cell growth. J. Bacterial. 176, 6074-6081. https://doi.org/10.1128/jb.176.19.6074-6081.1994
- Fujii, T., Takeo, M. and Maeda, Y. (1997) Plasmid-encoded genes specifying aniline oxidation from Acinetobacter sp. strain YAA. Microbiology 143, 93-99. https://doi.org/10.1099/00221287-143-1-93
- Furukawa, K, Hirose, J., Suyama, A., Zaiki, T. and Hayashida, S. (1993) Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). J. Bacteriol. 175, 5224-5232. https://doi.org/10.1128/jb.175.16.5224-5232.1993
- Harayama, S., Polissi, A. and Rekik, M. (1991) Divergent evolution of chloroplast-type ferredoxins. FEBS Left. 285, 85-88. https://doi.org/10.1016/0014-5793(91)80730-Q
- Hugo, N., Armengaud, J., Gaillard, J., Timmis, K N. and Jouanneau, Y. (1998) A novel [2Fe-2S] ferredoxin from Pseudomonas putida mt-2 promotes the reductive reactivation of catechol 2,3-dioxygenase. J. Biol. Chem. 273, 9622-9629. https://doi.org/10.1074/jbc.273.16.9622
- Hugo, N., Meyer, C., Armengaud, J., Gaillard, J., Timmis, K N. and Jouanneau, Y. (2000) Characterization of three XylT-like [2Fe-2S] ferredoxins associated with catabolism of cresols or naphthalene: evidence for their involvement in catechol dioxygenase reactivation. J. Bacteriol. 182, 5580-5585. https://doi.org/10.1128/JB.182.19.5580-5585.2000
- Kirn, S. and Shin, H.-Y. (2000) Reduction of Azobenzene by purified bovine liver quinone reductase. J. Biochem. Mol. Biol. 33, 321-325
- Kim, K P., Seo, D. I., Lee, D. H., Kim, Y. and Kirn, C. K (1998) Cloning and expression in E. coli of the genes responsible for degradation of 4-chlorobenzoate and 4-chlorocatechol from Pseudomonas sp. strain S-47. J. Microbiol. 36, 99-105.
-
Kim, S. I., Kim, S.-J., Leem, S.-H., Oh, K-H., Kim, S. and Park, Y.-M. (2001) Site-directed mutagenesis of two cysteines (155, 202) in catechol 1,2-dioxygenase
$I_{1}$ of Acinetobacter lwoffi K24. J. Biochem. Mol. Biol. 34, 172-175. -
Kim, S. I., Kweon, S. M., Kirn, S. and Ha, K-S. (1997) Expression and characterization of cat
$A_{1}$ (catechol 1,2-dioxygenase$I_{1}$ ) of Acinetobacter lwoffi K24 in Escherichiacoli. J. Biochem. Mol. Bioi. 30, 342-345. - Kukor, J. J. and Olsen, R. H. (1996) Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl. Environ. Microbiol. 62, 1728-1740.
- Manson, J. R. and Canunack, R. (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu. Rev. Microbiol. 46, 277-305. https://doi.org/10.1146/annurev.mi.46.100192.001425
- Mars, A. E., Kingma, J., Kaschabek, S. R., Reineke, W. and Janssen, D. B. (1999) Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase resion of Pseudomonas putida GJ3l. J. Bacteriol. 181, 1309-1318.
- Ng, L. C., Shingler. V., Sze, C. C. and Poh, C. L. (1994) Cloning and sequences of the first eight genes of the chromosomally encoded (methyl) phenol degradation pathway from Pseudomonas putida P35X. Gene 151, 29-36. https://doi.org/10.1016/0378-1119(94)90629-7
- Noh, S. J., Kim, Y.. Min, K. H., Karegoudar, T. B. and Kim, C. K (2000) Cloning and nucleotide sequence analysis of xylE gene responsible for meta-cleavage of 4-chlorocatechol from Pseudomonas sp. S-47. Mol. Cells 10, 475-479.
-
Nozaki, M., Ono, K, Nakazawa, T., Kotani, S. and Hayashi, O. (1968) Metapyrocatechase.
$\Pi$ . The role of iron and sultbydryl groups. J. Biol. Chem. 243, 2682-2690. - Polissi, A. and Harayama, S. (1993) In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J. 12, 3339-3347.
- Sala-Trepat, J. M. and Evans, C. W. (1971) The meta cleavage of catechol by Azotobacter species. 4-Oxalocrotonate pathway. Eur. J. Biochem. 20, 400-413. https://doi.org/10.1111/j.1432-1033.1971.tb01406.x
- Sambrook, J., Fritsch, E. F. and Maniatis, T. (2001) Molecular Cloning: A UIboratory Manual. 3rd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Shingler, V., Powlowski, J. and Marklund, U. (1992) Nucleotide sequence and functional analysis of the complete phenol/3,4- dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacterial. 174, 711-724. https://doi.org/10.1128/jb.174.3.711-724.1992
- Wasserfallen, A. (1989) Biochemical and genetical study of the specificity of catechol 2,3-dioxygenase from Pseudomonas putida. Ph.D. thesis, University of Geneva.
Cited by
- The thermophilic archaeon Sulfolobus solfataricus is able to grow on phenol vol.156, pp.5-6, 2005, https://doi.org/10.1016/j.resmic.2005.04.001
- Complete Sequence Determination Combined with Analysis of Transposition/Site-specific Recombination Events to Explain Genetic Organization of IncP-7 TOL Plasmid pWW53 and Related Mobile Genetic Elements vol.369, pp.1, 2007, https://doi.org/10.1016/j.jmb.2007.02.098
- Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways vol.55, pp.51, 2016, https://doi.org/10.1021/acs.biochem.6b00831
- Less is more: reduced catechol production permits Pseudomonas putida F1 to grow on styrene vol.158, pp.Pt_11, 2012, https://doi.org/10.1099/mic.0.058230-0