Abstract
This paper proposes a fuzzy rule-based model as a means to build usability models between emotional satisfaction and design variables of consumer products. Based on a subtractive clustering algorithm, this model obtains partially overlapping rules from existing data and builds multiple local models each of which has a form of a linear regression equation. The best subset procedure and cross validation technique are used to select appropriate input variables. The proposed technique was applied to the modeling of luxuriousness, balance, and attractiveness of office chairs. For comparison, regression models were built on the same data in two different ways; one using only potentially important variables selected by the design experts, and the other using all the design variables available. The results showed that the fuzzy rule-based model had a great benefit in terms of the number of variables included in the model. They also turned out to be adequate for predicting the usability of a new product. Better yet, the information on the product classes and their satisfaction levels can be obtained by interpreting the rules. The models, when combined with the information from the regression models, are expected to help the designers gain valuable insights in designing a new product.