References
- Artin, S. M. and Bradshaw, R. A. (1988) Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27, 7979-7984. https://doi.org/10.1021/bi00421a001
- Artin, S. M., Kendall, R. L., Hall, L., Weaver, L. H., Stewart, A. E., Matthews, B. W. and Bradshaw, A. (1995) Eukaryotic methionyl aminopeptidases: two classes of cobalt-dependent enzymes. Proc. Natl. Acad. Sci. USA 92, 7714-7718. https://doi.org/10.1073/pnas.92.17.7714
- Bachmair, A., Finley, D. and Varshavsky, A. (1985) In vivo half-life of a protein is a function of its amino-teoninal residue. Science 234, 179-186. https://doi.org/10.1126/science.3018930
- Bazan, J. F., Weaver, L. H., Roderick, S. L., Huber, R. and Matthews, B. W. (1994) Sequence and structure comparison suggest that methionine aminopeptidase, prolidase, aminopeptidase P. and creatinase share a common fold. Proc. Natl. Acad. Sci. USA 91, 2473-2477. https://doi.org/10.1073/pnas.91.7.2473
- Ben-Bassat, A., Bauer, K., Chang, S. Y., Myambo, K., Boosman, A. and Chang, S. (1987) Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J. Bacteriol. 169,751-757. https://doi.org/10.1128/jb.169.2.751-757.1987
- Bradshaw, R. A., Brickey, W. W. and Walker, K. W. (1998) N-terminal processing: the methionine aminopeptidase and N alpha-acetyl transferase families. Trends Biochem. Sci. 23, 263-267. https://doi.org/10.1016/S0968-0004(98)01227-4
- Cha, M. H., Yong, W. M., Lee, S. M., Lee, Y. S. and Chung, I. Y. (2000) The biochemical and molecular characterization of recombinant Bacillus subtilis tripeptidase (pepT) as a zinc-dependent metalloenzyme. Mol. Cells 10, 423-431.
- Chang, S. Y., McGary, E. C. and Chang, S. (1989) Methionine aminopeptidase gene of Escherichia coli is essential for cell growth. J. Bacterial. 171, 4071-4072. https://doi.org/10.1128/jb.171.7.4071-4072.1989
- Chang, Y. -H., Teichert, U. and Smith, J. A. (1990) Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae. J. BioI. Chem. 265, 19892-19897.
- Chang, Y. -H., Teichert, U. and Smith, J. A. (1992) Molecular cloning, sequencing, deletion, and overexpression of a methionine anlinopeptidase gene from Saccharomyces cerevisiae. J. BioI. Chem. 267, 8007-8011.
- D'souza, V. M. and Holz, R. C. (1999) The methionyl aminopeptidase from Escherichia coli can function as an iron (II) enzyme. Biochemistry 38, 11079-11085. https://doi.org/10.1021/bi990872h
- Rinta,C., Persson, B., Jomvall, H. and von Heijne, G. (1986) Sequence determinants of cytosolic N-terminal protein processing. Eur. J. Biochem. 154, 193-196. https://doi.org/10.1111/j.1432-1033.1986.tb09378.x
- Kendall, R. L. and Bradshaw, R. A. (1992) Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins. J. Biol. Chem. 267, 20667-20673.
- Laemmli, U. K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
- Li, X. and Chang, Y. -H. (1995) Amino-terminal protein processing in Saccharomyces cerevisiae is an essential function that requires two distinct methionine aminopeptidases. Proc. Natl. Acad. Sci. USA 92, 12357-12361. https://doi.org/10.1073/pnas.92.26.12357
- Li, X. and Chang, Y. -H. (1996) Evidence that the human homologue of a rat initiation factor-2 associated protein (p67) is a methionine aminopeptidase. Biochem. Biophys. Res. Commun. 227, 152-159. https://doi.org/10.1006/bbrc.1996.1482
- Liu, S., Widom, J., Kemp, C. W., Crews, C. M. and Clardy, J. (1998) Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282, 1324-1327. https://doi.org/10.1126/science.282.5392.1324
- Lowther, W. T. and Matthews, B. W. (2000) Structure and function of the methionine aminopeptidases. Biochim. Biophys. Acta. 1477, 157-167. https://doi.org/10.1016/S0167-4838(99)00271-X
- Lowther, W. T., Orville, A. M., Madden, D. T., Lim, S., Rich, D. H. and Matthews, B. W. (1999) Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis. Biochemistry 38, 7678-7688. https://doi.org/10.1021/bi990684r
- Miller, C. G., Kukral, A. M., Miller, J. L. and Movva, N. R. (1989) PepM is an essential gene in Salmonella typhimurium. J. Bacterial. 171, 5215-5217. https://doi.org/10.1128/jb.171.9.5215-5217.1989
- Miller, C. G., Strauch, K. L., Kukral, A. M., Miller, J. L., Wingfield, P. T., Mazzei, G. J., Weden, R. C., Graber, P. and Movva, N. R. (1987) N-terminal methionine-specific peptidase in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 84, 2718-2722. https://doi.org/10.1073/pnas.84.9.2718
- Moerschell, R. P., Hosokawa, Y., Tsunasawa, S. and Sherman, F. (1990) The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes c created by oligonucleotide transformation. J. Biol. Chem. 265, 19638-19643.
- Movva, N. R., Semon, D., Meyer, C., Kawashima, E., Wmgfield, P., Miller, J. L. and Miller, C. G. (1990) Cloning and nucleotide sequence of the Salmonella typhimurium pepM gene. Mol. Gen. Genet. 223, 345-348.
- Park, Y. S., Cha, M. H., Yong, H. M., Kim, H. J., Chung, I. Y. and Lee, Y. S. (1999) The purification and characterization of Bacillus subtilis tripeptidase (PepT). J. Biochem. Mol. Biol. 32, 239-246.
- Roderick, S. L. and Matthews, B. W. (1993) Structure of the cobalt-dependent methionine aminopeptidase from Escherichia coli: a new type of proteolytic enzyme. Biochemistry 32, 3907-3912. https://doi.org/10.1021/bi00066a009
- Simitsopoulou, M., Vafopoulou, A., Choli-Papadopoulou, T. and Alichanidis, E. (1997) Purification and partial characterization of a tripeptidase from Pediococcus pentosaceus K9.2. Appl. Environ. Microbiol. 63, 4872-4876.
- Simpson, R. J., Neuberger, M. R. and Liu, T. Y. (1976) Complete amino acid analysis of proteins from a single hydrolysate. J. BioI. Chem. 251, 1936-1940.
- Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-85. https://doi.org/10.1016/0003-2697(85)90442-7
- Tahirov, T. H., Oki, H., Tsukihara, T., Ogasahara, K., Yutani, K., Ogata, K., Izu, Y., Tsunasawa, S. and Kato, I. (1998) Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J. Mol. Biol. 284, 101-124. https://doi.org/10.1006/jmbi.1998.2146
- Taylor, A. (1993) Aminopeptidase: towards a mechanism of action. Trends Biochem Sci. 18, 167-172.
- Tsunasawa, S., lzu, Y., Miyagi, M. and Kato, I. (1997) Methionine aminopeptidase from the hyperthermophilic Archaeon Pyrococcus furiosus: molecular cloning and overexpression in Escherichia coli of the gene, and characteristics of the enzyme. J. Biochem. 122, 843-850. https://doi.org/10.1093/oxfordjournals.jbchem.a021831
-
Walker, K. W. and Bradshaw, R. A. (1998) Yeast methionine aminopeptidase I can utilize either
$Zn^{2+} \; or \; Co^{2+}$ as a cofactor: a case of mistaken identity? Protein Sci. 7, 2684-2687. https://doi.org/10.1002/pro.5560071224
Cited by
- Substrate preference of a Geobacillus maltogenic amylase: A kinetic and thermodynamic analysis vol.60, 2013, https://doi.org/10.1016/j.ijbiomac.2013.04.063
- A thermo-stable lysine aminopeptidase fromPseudomonas aeruginosa: Isolation, purification, characterization, and sequence analysis vol.54, pp.10, 2014, https://doi.org/10.1002/jobm.201300752
- Identification of antibacterial mechanism of l-amino acid oxidase derived from Trichoderma harzianum ETS 323 vol.278, pp.18, 2011, https://doi.org/10.1111/j.1742-4658.2011.08262.x
- l-leucine aminopeptidase production by filamentous Aspergillus fungi vol.41, pp.6, 2005, https://doi.org/10.1111/j.1472-765X.2005.01789.x
- Purification and Biochemical Characterization of Methionine Aminopeptidase (MetAP) from Mycobacterium smegmatis mc2155 vol.151, pp.2-3, 2008, https://doi.org/10.1007/s12010-008-8227-y