DOI QR코드

DOI QR Code

Effects of Salts on the Conformation and Catalytic Properties of D-Amino Acid Aminotransferase

  • Ro, Hyeon-Su (Biomolecular Process Engineering Laboratory, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2002.05.31

Abstract

The effects of salts on the biochemical properties of D-amino acid aminotransferase from Bacillus sp. YM-1 have been studied to elucidate both the inhibitory effects of salts on the activity and the protective effects of salts on the substrate-induced inactivation. The results from UV-visible spectroscopy studies on the reaction of the enzyme with D-serine revealed that salt significantly reduced the rate of the formation of the quinonoid intermediate and its accumulation. The kinetic and spectroscopy studies of the reaction with $\alpha$-[$^2H$]-DL-serine in different concentrations of NaCl provided evidence that the rate-limiting step was changed from the deprotonation of the external aldimine to another step(s), presumably to the hydrolysis of the ketimine. Gel filtration chromatography data in the presence of NaCl showed that the enzyme volume was reduced sharply with the increasing NaCl concentration, up to 100 mM. An additional increase of the NaCl concentration did not affect the elution volume, which suggests that the enzyme has a limited number of salt-binding groups. These results provide detailed mechanistic evidence for the way salts inhibit the catalytic activity of D-amino acid aminotransferase.

Keywords

References

  1. Bhatia, M. B., Martinez del Pozo, A., Ringe, D., Yoshimura, T., Soda, K. and Manning, J. M. (1993) Role reversal for substrates and inhibitors. Slow inactivation of D-amino acid transaminase by its normal substrates and protection by inhibitors. J. Biol. Chem. 268, 17687-17694.
  2. Demidkina, T. V. and Myagkikh, I. V. (1989) The activity and reaction specificity of tyrosine phenol-lyase regulated by monovalent cations. Biochimie 71, 565-571. https://doi.org/10.1016/0300-9084(89)90188-0
  3. Fotheringham, I. G., Bledig, S. A. and Taylor, P. P. (1998) Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. J. Bacteriol. 180, 4319-4323.
  4. Hayashi, H. and Kagamiyama, H. (1995) Reaction of aspartate aminotransferase with L-erythro-3-hydroxyaspartate: involvement of Tyr70 in stabilization of the catalytic intermediates. Biochemistry 34, 9413-9423. https://doi.org/10.1021/bi00029a017
  5. Hayashi, H., Inoue, K., Mizuguchi, H. and Kagamiyama, H. (1996) Analysis of the substrate-recognition mode of aromatic amino acid aminotransferase by combined use of quasisubstrates and site-directed mutagenesis: systematic hydroxy-group addition/deletion studies to probe the enzymesubstrate interactions. Biochemistry 35, 6754-6761. https://doi.org/10.1021/bi00029a017
  6. Hohenester, E., Keller, J. W. and Jansonius, J. N. (1994) An alkali metal ion size-dependent switch in the active site structure of dialkylglycine decarboxylase. Biochemistry 33, 13561-13570. https://doi.org/10.1021/bi00250a008
  7. Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W. and Davies, D. R. (1988) Three-dimensional structure of the tryptophan synthase $\alpha_{2}\beta_{2}$ multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17857-17871.
  8. Isupov, M. N., Antson, A. A., Dodson, E. J., Dodson, G. G., Dementieva, I. S., Zakomirdina, L. N., Wilson, K. S., Dauter, Z., Lebedev, A. A. and Harutyunyan, E. H. (1998) Crystal structure of tryptophanase. J. Mol. Biol. 276, 603-623. https://doi.org/10.1006/jmbi.1997.1561
  9. Kim, S. S. and Yu, Y. G. (2000) Molecular cloning of an extremely thermostable alanine racemase from Aquifex pyrophilus and enzymatic characterization of the expressed protein. J. Biochem. Mol. Biol. 33, 82-88.
  10. Lee, Y. S., Lee, G. T. and Cho, Y. D. (2001) Regulation of Glyine max ornithine decarboxylase by salt and spermine. J. Biochem. Mol. Biol. 34, 478-483.
  11. Low, P. S. and Somero, G. N. (1975a) Activation volumes in enzymatic catalysis: their sources and modification by low-molecular-weight solutes. Proc. Natl. Acad. Sci. USA 72, 3014-3018. https://doi.org/10.1073/pnas.72.8.3014
  12. Low, P. S. and Somero, G. N. (1975b) Protein hydration changes during catalysis: a new mechanism of enzymatic rate-enhancement and ion activation/inhibition of catalysis. Proc. Natl. Acad. Sci. USA 72, 3305-3309. https://doi.org/10.1073/pnas.72.9.3305
  13. Martinez del Pozo, A., Pospischil, M. A., Ueno, H., Manning, J. M., Tanizawa, K., Nishimura, K., Soda, K., Ringe, D., Stoddard, B. and Petsko, G. (1989) Effects of D-serine on bacterial D-amino acid transaminase: accumulation of an intermediate and inactivation of the enzyme. Biochemistry 28, 8798-8803. https://doi.org/10.1021/bi00448a018
  14. Martinez del Pozo, A., Yoshimura, T., Bhatia, M. B., Futaki, S., Manning, J. M., Ringe, D. and Soda, K. (1992) Inactivation of dimeric D-amino acid transaminase by a normal substrate through formation of an unproductive coenzyme adduct in one subunit. Biochemistry 31, 6018-6023. https://doi.org/10.1021/bi00141a009
  15. Martinez-Carrion, M. and Jenkins, W. T. (1965a) D-Alanine-D-glutamate transaminase. I. Purification and characterization. J. Biol. Chem. 240, 3538-3546.
  16. Martinez-Carrion, M. and Jenkins, W. T. (1965b) D-Alanine-D-glutamate transaminase. II. Inhibitors and the mechanism of transamination of D-amino acids. J. Biol. Chem. 240, 3547-3552.
  17. Miles, E. W. and McPhie, P. (1974) Evidence for a rate-determining proton abstraction in the serine deaminase reaction of the beta 2 subunit of tryptophan synthetase. J. Biol. Chem. 249, 2852-2857.
  18. Peracchi, A., Mozzarelli, A. and Rossi, G. L. (1995) Monovalent cations affect dynamic and functional properties of the tryptophan synthase $\alpha_{2}\beta_{2}$ complex. Biochemistry 34, 9459-9465. https://doi.org/10.1021/bi00029a022
  19. Rhee, S., Parris, K. D., Ahmed, S. A., Miles, E. W. and Davies, D. R. (1996) Exchange of K+ or Cs+ for Na+ induces local and long-range changes in the three-dimensional structure of the tryptophan synthase $\alpha_{2}\beta_{2}$ complex. Biochemistry 35, 4211-4221. https://doi.org/10.1021/bi952506d
  20. Ro, H. S., Hong, S. P., Seo, H. J., Yoshimura, T., Esaki, N., Soda, K., Kim, H. S. and Sung, M. H. (1996) Site-directed mutagenesis of the amino acid residues in beta-strand III [Val30-Val36] of D-amino acid aminotransferase of Bacillus sp. YM-1. FEBS Lett. 398, 141-145. https://doi.org/10.1016/S0014-5793(96)01222-7
  21. Soper, T. S. and Manning, J. M. (1981) Different modes of action of inhibitors of bacterial D-amino acid transaminase. A target enzyme for the design of new antibacterial agents. J. Biol. Chem. 256, 4263-4268.
  22. Suelter, C. H. and Snell, E. E. (1977) Monovalent cation activation of tryptophanase. J. Biol. Chem. 252, 1852-1857.
  23. Sugio, S., Petsko, G. A., Manning, J. M., Soda, K. and Ringe, D. (1995) Crystal structure of a D-amino acid aminotransferase: How the protein controls stereoselectivity. Biochemistry 34, 9661-9669. https://doi.org/10.1021/bi00030a002
  24. Tanizawa, K., Masu, Y., Asano, S., Tanaka, H. and Soda, K. (1989) Thermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination. J. Biol. Chem. 264, 2445-2449.
  25. Toney, M. D., Hohenester, E., Cowan, S. W. and Jansonius, J. N. (1993) Dialkylglycine decarboxylase structure: Bifunctional active site and alkali metal sites. Science 261, 756-759. https://doi.org/10.1126/science.8342040
  26. van Ophem, P. W., Erickson, S. D., Martinez del Pozo, A., Haller, I., Chait, B. T., Yoshimura, T., Soda, K., Ringe, D., Petsko, G. and Manning, J. M. (1998) Substrate inhibition of D-amino acid transaminase and protection by salts and by reduced nicotinamide adenine dinucleotide: isolation and initial characterization of a pyridoxo intermediate related to inactivation. Biochemistry 37, 2879-2888. https://doi.org/10.1021/bi972842p
  27. von Stosch, A. G. (1996) Aspartate aminotransferase complexed with erythro-beta-hydroxyaspartate: crystallographic and spectroscopic identification of the carbinolamine intermediate. Biochemistry 35, 15260-15268. https://doi.org/10.1021/bi960994z
  28. Yonaha, K., Misono, H., Yamamoto, T. and Soda, K. (1975) D-amino acid aminotransferase of Bacillus sphaericus. Enzymologic and spectrometric properties. J Biol. Chem. 250, 6983-6989.

Cited by

  1. Deciphering the Substrate Specificity of SbnA, the Enzyme Catalyzing the First Step in Staphyloferrin B Biosynthesis vol.55, pp.6, 2016, https://doi.org/10.1021/acs.biochem.5b01045
  2. Structural Snapshots of an Engineered Cystathionine-γ-lyase Reveal the Critical Role of Electrostatic Interactions in the Active Site vol.56, pp.6, 2017, https://doi.org/10.1021/acs.biochem.6b01172