DOI QR코드

DOI QR Code

Ratiometric pH Measurements Using LysoSensor DND-192

  • Kang, Jung-Sook (Department of Oral Biochemistry and Molecular Biology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Kostov, Yordan (Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County)
  • Published : 2002.07.31

Abstract

A method for the ratiometric pH sensing using LysoSensor DND-192 is presented in this paper. It works in the physiological pH range. It is based on the use of two fluorophores which differ significantly in their lifetimes. As the discrimination of their emissions is performed through two different frequencies, this method can allow significant overlap of the emission spectra. A simple long-pass filter, or a combination of long-and short-pass filters, was used instead of narrow-bandpass devices. Importantly, the measurements were carried out under strong ambient light. The method could be used in a wide variety of applications, such as intracellular measurements, microscopy, bioprocess monitoring, etc.

Keywords

References

  1. Abugo, O. O., Nair, R. and Lakowicz, J. R (2000) Fluorescence properties of rhodamine 800 in whole blood and plasma. Anal. Biochem.279, 142-150. https://doi.org/10.1006/abio.2000.4486
  2. Bae, J.-S. and Lee, S.-T. (2001) The human PTK6 interacts with a 23-kDa tyrosine-phosphorylated protein and is localized in cytoplasm in breast carcinoma T-47D cells. J. Biochem. Mol. Biol. 34, 33-38.
  3. Gratton, E., Lakowicz, J. R, Maliwal, B. P., Cherek, H. and Laczko, G. (1984) Resolution of mixtures of fluorophores using variable-frequency phase and modulation data. Biophys. J. 46, 478-486.
  4. Kostov, Y', Harms, P., Pilato, R S. and Rao, G. (2000) Ratiometric oxygen sensing: detection of dual-emission ratio through a single emission filter. Analyst 125, 1175-1178. https://doi.org/10.1039/b002348p
  5. Kostov, Y., Harms, P., and Rao, G. (2001) Ratiometric sensing using dual-frequency lifetime discrimination. Anal. Biochem. 297, 105-108. https://doi.org/10.1006/abio.2001.5336
  6. Laczko, G., Gryczynski, I., Gryczynski, Z., Wiczk, W., Malak, H. and Lakowicz, J. R (1990) 10 GHz fluorimeter. Rev. Sci. Instr. 61, 2331-2337. https://doi.org/10.1063/1.1141360
  7. Lakowicz, J. R (1999) Principles of Fluorescence spectroscopy, 2nd ed., pp. 25-61, Kluwer Academic/Plenum Publishers, New York.
  8. Lakowicz, J. R, Castellano, F. N., Dattelbaum, J. D., Tolosa, L., Rao, G. and Gryczynski, I. (1998) Low-frequency modulation sensors using nanosecond fluorophores. Anal. Chem. 70, 5115-5121. https://doi.org/10.1021/ac980876c
  9. Lakowicz, J. R, Gratton, E., Laczko, G., Cherek, H. and Limkeman, M. (1984) Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys. J. 46, 463-477. https://doi.org/10.1016/S0006-3495(84)84043-6
  10. Lakowicz, J. R, Laczko, G. and Gryczynski, I. (1986) 2 GHz fluorimeter. Rev. Sci. Instr. 57, 2499-2506. https://doi.org/10.1063/1.1139215
  11. Lee, J. -C. and Lim K. -T. (2001) Inhibitory effects of the ethanol extract of Ulmus davidiana on apoptosis induced by glucose-glucose oxidase and cytokine production in cultured mouse primary immune cells. J. Biochem. Mol. Biol. 34,463-471.
  12. Lin, H. -J., Herman, P., Kang, J. S. and Lakowicz, J. R (2001) Fluorescence lifetime characterization of novel low-pH probes. Anal. Biochem. 294, 118-125. https://doi.org/10.1006/abio.2001.5155
  13. Nedergaard, M.. Desai, S. and Pulsinelli, W. (1990) Dicarboxy-dichlorofluorescein: a new fluorescent probe for measuring acidic intracellular pH. Anal. Biochem. 187, 109-114. https://doi.org/10.1016/0003-2697(90)90425-9
  14. Sipior, J., Carter, J. M., Lakowicz, J. Rand Rao, G. (1996) Single quantum well light-emitting diodes demonstrated as excitatIon sources for nanosecond phase modulation t1uorescence lifetime measurements. Rev. Sci. Instr. 67. 3795-3798. https://doi.org/10.1063/1.1147145
  15. Slavik, J., Lanz, E. and Cimprich, P. (1999) Measurement of individual intracellular pH and membrane potential values in living cells; in Proceedings of SPIE, Bomhop, D. J., Contag, C. H. and Sevick-Muraca, E. M. (eds), pp. 76-83. SPIE-The International Society for Optical Engineering, BeIlingharn, Washington.
  16. Uh. H. S., Choi, J. H., Byun, S. M., Kim, S. Y. and Lee, H. H. (2001) Cloning, sequencing and baculovirus-based expression of fusion-glycoprotein D gene of Herpes simplex virus type 1 (F). J. Biochem. Moi. BioI. 34, 371-378.
  17. Whitaker, J. E., Haugland, R P. and Prendergast, F. G. (1991) Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. Anal. Biochem. 194, 330-344. https://doi.org/10.1016/0003-2697(91)90237-N
  18. Zignani, M., Drummond, D. C., Meyer, O.. Hong, K. and Leroux, J. C. (2000) In vitro characterization of a novel polymeric-based pH-sensitive liposome system. Biochim. Biophys. Acta 1463, 383-394. https://doi.org/10.1016/S0005-2736(99)00234-5

Cited by

  1. A series of naphthalimide derivatives as intra and extracellular pH sensors vol.31, pp.29, 2010, https://doi.org/10.1016/j.biomaterials.2010.06.023
  2. Transforming Growth Factor-β: Biology and Clinical Relevance vol.38, pp.1, 2005, https://doi.org/10.5483/BMBRep.2005.38.1.001
  3. Dynamics of Supercoiled and Linear pBluescript II SK(+) Phagemids Probed with a Long-lifetime Metal-ligand Complex vol.38, pp.1, 2005, https://doi.org/10.5483/BMBRep.2005.38.1.104
  4. Imaging Lysosomal pH Alteration in Stressed Cells with a Sensitive Ratiometric Fluorescence Sensor vol.2, pp.3, 2017, https://doi.org/10.1021/acssensors.7b00035
  5. A new rhodamine B-based lysosomal pH fluorescent indicator vol.788, 2013, https://doi.org/10.1016/j.aca.2013.06.038
  6. High performance optical ratiometric sol–gel-based pH sensor vol.139, pp.1, 2009, https://doi.org/10.1016/j.snb.2008.12.066