DOI QR코드

DOI QR Code

Stabilization of Retinol through Incorporation into Liposomes


Abstract

Chemical and photochemical processes during storage and preparation rapidly degrade retinol, the most active form of vitamin A. therefore, the efficacy of incorporation into liposomes in order to modulate the kinetics of retinol degradation was investigated. Retinol was readily incorporated into multilamellar liposomes that were prepared form soybean phosphatidylcholine; the extent of the incorporation was 98.14±0.93% at pH 9.0 at a ratio of 0.01 : 1 (wt:wt) retinol : phospholipid. It was only marginally lower at higher retinol concentrations. The pH of the hydration buffer had a small effect. The incorporation efficiency ranged from 99.25±0.47% at pH 3 to 97.45±1.13% at pH 11. The time course of the retinol degradation in the aqueous solution in liposomes was compared to that of free retinol and free retinol with α-tocopherol under a variety of conditions of pH(3, 7, and 11), temperature(4, 25, 37, and 50℃), and light exposure(dark, visible, and UV). The retinol that was incorporated into the liposomes degraded significantly slower than the free retinol or retinol with α-tocopherol at pH 7 and 11. At pH 3, where the free retinol degrades rapidly, the degradation kinetics were similar in liposomes and the presence of α-tocopherol. At pH 7.0 and 4℃ in the light, for example, free aqueous retinol was completely degraded within 2 days, while only 20% of the retinol in the liposomes were degraded after 8 days. In general, the protective effect of the liposome incorporation was greater at low temperatures, at neutral and high pH, and in the dark. The results suggest that protection is greater in the solid, gel phase than in the fluid liquid crystalline phase lipids. These results indicate that the incorporation into liposomes can extend the shelf-life of retinol under a variety of conditions of temperature, pH, and ambient light conditions.

Keywords

References

  1. Anne, M. Y. and Gregory, G. (1996) Proteolysis of retinol in liposomes and its protection with tocopherol and oxybenzone. Photochem Photobiol. 63, 344-352. https://doi.org/10.1111/j.1751-1097.1996.tb03037.x
  2. Bondi, A. and Sklan, D. (1994) Vitamin A and carotene in animal nutrition. Prog. Food Nutr. Sci. 8, 165-191
  3. Brody, S. S. (1982) Absorption and picosecond fluorescence characteristics of chlorophyll vesicles as a function of temperature. Zeitschrift fur Naturforschung. 37, 260-267.
  4. Dawson, M. I. and Okamura, W. H. (1990) Chemistry and Biology of Synthetic Retinoids. CRC Press, Boca Raton
  5. Douer, D., Estey, E., Santillana, S., Bennett, J. M., LopezBemstein, G., Boehm, K. and Williams, T. (2001) Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood 97, 73- 80. https://doi.org/10.1182/blood.V97.1.73
  6. Dziezak, J. (1988) Microencapsulation and encapsulated food ingredients. Food Technol. 42, 136-147.
  7. Estey, E., Koller, C., Cortes, J., Reed, P., Freireich, E, Giles, F. and Kantarjian, H. (2001) Treatment of newly-diagnosed acute promyelocytic leukemia with liposomal all-trans retinoic acid. Leuk. Lymphoma 42, 309-316. https://doi.org/10.3109/10428190109064587
  8. Fex, G. and Johannesson, G. (1988) Retinol transfer across and between phospholipid bilayer membranes. Biochim. Biophys. Acta 944, 249-255 https://doi.org/10.1016/0005-2736(88)90438-5
  9. Huster, D., Jin, A. J., Arnold, K. and Gawrisch, K. (1997) Water permeability of polyunsaturated lipid membranes using $^{17}O$NMR. Biophys. J. 73, 855-864. https://doi.org/10.1016/S0006-3495(97)78118-9
  10. Kim, H. H. and Baianu, I. e. (1991) Novel liposome microencapsulation techniques for food applications. Trends Food Sci. Technol. 2, 55-61. https://doi.org/10.1016/0924-2244(91)90622-P
  11. Kim, J. H., Hong, Y. T., Park, J. S., Kim, S. H., Kang, T. G., Hong, S. R., Park, C. w., Kweon, O. C. and Rhee, D. K. (1991) Effect of ethanol and vitamin A on DNA, RNA and protein damage by dimethyl - initrosamine in mouse tissue. J. Biochem. Mol. Biol. 24, 543-549.
  12. Kirby, C. J. (1984) Controlled delivery of functional food ingredients: Opportunities for liposomes in the food industry; in Liposome Technology 11, Gregoriadis, G. (eds.), pp. 215-232, CRC Press, Boca Raton
  13. Kirby, C. J., Whittle, C. J., Rigby, N., Coxon, D. T. and Law, B. A. (1991) Stabilization of ascorbic acid by microencapsulation in liposomes. Int. J. Food Sci. Technol. 26, 437-449.
  14. Konings, A. W. T. (1984) Lipid peroxidation in liposomes; in Liposome Technology I, Gregoriadis, G. (ed.), pp. 139-161, CRC Press, Boca Raton, Florida.
  15. Lee, C. M., Boileau, A. C., Boileau, T. W., Williams, A. W., Swanson, K. S., Heintz, K. A. and Erdman, J. W. (1999a) Review of animal models in carotenoid research. J. Nutr. 129, 2271-2277.
  16. Lee, Y. W., Hwang, Y. I. and Lee, S. C. (1999b) Effect of liposome on the stabilization of ascorbic acid. Korean J. Food Sci. Technol. 31, 280-284.
  17. Lim, K. P. and Choi, M. U. (1991) Permeability study of phospholipid liposomes prepared by reverse phase evaporation method. J. Biochem. Mol. Biol. 24,609-616
  18. Mitchell, D. e. and Litman, B. J. (1998) Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys. J. 74, 879-891. https://doi.org/10.1016/S0006-3495(98)74011-1
  19. New, R. R. C. (1994) Liposomes, a Practical Approach, IRL Press, Oxford, England
  20. Park, H. J., Kim, I. S. and Park, J. S. (1994) Encapsulation of Agrobacterium Ti plasmid into liposomes. J. Biochem. Mol. Biol. 27,190-195.
  21. Reineccius, G. A. (1995) Liposomes for controlled release in the food industry; in Encapsulation and Controlled Release of Fimd Ingredients, ACS Symposium Series, 590, pp. 113-131, American Chemical Society, Washington D.C. https://doi.org/10.1021/bk-1995-0590.ch011
  22. Sauberlich, H. B. (1985) Bioavailability of vitamins. Prog. Food Nutr. Sci. 9, 1-33.
  23. Singh, A. K. and Das, J. (1998) Liposome encapsulated vitamin A compounds exhibit greater stability and diminished toxicity. Biophys. Chem. 73, 155-162. https://doi.org/10.1016/S0301-4622(98)00158-6
  24. Spom, M. B., Roberts, A. B. and Goodman, D. S. (1994) The Retinoids: Biology, Chemistry, and Medicine, 2nd ed., Raven Press, New York.
  25. Subramanyam, G. B. and Parrish, D. B. (1976) Colorimetric reagents for determining vitamin A in feeds and foods. J. Assoc. Off. Anal. Chem. 59, 1125-1130.
  26. Subczynski, W. K. and Hyde, J. S. (1998) Membranes: Barriers or pathways for oxygen transport; in Oxygen Transport to Tissue, Hudetz, A. G. and Bruley, D. F. (eds.), pp. 399-408, Plenum Press, New York, New York.
  27. Tesoriere, L., Darpa, D., Re, R. and Livrea, M. A. (1997) Antioxidant reactions of all-tram retinol in phospholipid bilayers: Effect of oxygen partial pressure, radical fluxes, and retinol concentration. Arch. Biochem. Biophys. 343, 13-18. https://doi.org/10.1006/abbi.1997.0128
  28. Willhite, C.C. (1986) Structure-activity relationships of retinoids in developmental toxicology. $\Pi$. Influence of the polyene chain of the vitamin A molecule. Toxicol. Appl. Pharmacol. 83, 563-575. https://doi.org/10.1016/0041-008X(86)90239-5

Cited by

  1. Listeria: A foodborne pathogen that knows how to survive vol.113, pp.1, 2007, https://doi.org/10.1016/j.ijfoodmicro.2006.07.008
  2. Vitamin A enrichment: Caution with encapsulation strategies used for food applications vol.46, pp.2, 2012, https://doi.org/10.1016/j.foodres.2011.09.025
  3. Chemical stability and phase distribution of all-trans-retinol in nanoparticle-coated emulsions vol.376, pp.1-2, 2009, https://doi.org/10.1016/j.ijpharm.2009.04.036
  4. Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions vol.33, pp.2, 2013, https://doi.org/10.1016/j.foodhyd.2013.03.015
  5. Liposomes as carrier vehicles for functional compounds in food sector vol.11, pp.9, 2016, https://doi.org/10.1080/17458080.2016.1148273
  6. Characterization of Antimicrobial-bearing Liposomes by ζ-Potential, Vesicle Size, and Encapsulation Efficiency vol.2, pp.1, 2007, https://doi.org/10.1007/s11483-007-9023-x
  7. Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol vol.423, pp.2, 2012, https://doi.org/10.1016/j.ijpharm.2011.12.027
  8. The Effect of Cholesterol in the Liposome Bilayer on the Stabilization of Incorporated Retinol vol.15, pp.3-4, 2005, https://doi.org/10.1080/08982100500364131
  9. Oxidative Stability of Marine Phospholipids in the Liposomal Form and Their Applications vol.46, pp.1, 2011, https://doi.org/10.1007/s11745-010-3496-y
  10. Encapsulation of Vitamin A palmitate for animal supplementation: Formulation, manufacturing and stability implications vol.27, pp.2, 2010, https://doi.org/10.3109/02652040903052036
  11. Literature Alerts vol.20, pp.2, 2003, https://doi.org/10.3109/02652040309178068
  12. Synthesis, Characterization, and Retinol Stabilization of Fatty Amide-β-cyclodextrin Conjugates vol.21, pp.8, 2016, https://doi.org/10.3390/molecules21070963
  13. Pickering emulsions for dermal delivery vol.21, pp.1, 2011, https://doi.org/10.1016/S1773-2247(11)50011-5
  14. Liposomal Nanocapsules in Food Science and Agriculture vol.45, pp.7-8, 2005, https://doi.org/10.1080/10408390591001135
  15. Recent advances in technologies for vitamin A protection in foods vol.19, pp.12, 2008, https://doi.org/10.1016/j.tifs.2008.08.002
  16. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids vol.4, pp.4, 2012, https://doi.org/10.1039/C1NR11273B
  17. Comparison of α-tocopherol microparticles produced with different wall materials: pea protein a new interesting alternative vol.24, pp.3, 2007, https://doi.org/10.1080/02652040701281167
  18. L-cysteine encapsulation in liposomes: Effect of phospholipids nature on entrapment efficiency and stability vol.25, pp.6, 2008, https://doi.org/10.1080/02652040802012453
  19. Physicochemical Aspects of the Coformulation of Colistin and Azithromycin Using Liposomes for Combination Antibiotic Therapies vol.102, pp.5, 2013, https://doi.org/10.1002/jps.23508
  20. Nanoparticle Coated Submicron Emulsions: Sustained In-vitro Release and Improved Dermal Delivery of All-trans-retinol vol.26, pp.7, 2009, https://doi.org/10.1007/s11095-009-9888-0
  21. Vitamin A palmitate-bearing nanoliposomes: Preparation and characterization vol.13, 2016, https://doi.org/10.1016/j.fbio.2015.12.002